Skip to main content
Log in

Ion conductivity of perovskites CaZr1 – x Sc x O3 – α (x = 0.03–0.20) in hydrogen-containing atmospheres

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The total, proton, and oxygen conductivities in the CaZr1–x Sc x O3–α system (x = 0.03–0.20) were studied experimentally in the reductive atmospheres H2 + H2O + N2 in the temperature range 600–900°C. The electric conductivity and the transport numbers of ions and protons were measured using the direct current four-probe method and the EMF method with oxygen and water vapor concentration cells, respectively. The materials under study are pure proton-conductive below 700°C in these atmospheres; at higher temperatures, a pronounced contribution of oxygen conductivity appears. The isotherms of the total and partial conductivities are symbatic and have a maximum between x = 0.05 and x = 0.10, which correlates with the position of the boundary of the single-phase state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreuer, K.D., Chem. Mater., 1996, vol. 8, p. 610.

    Article  CAS  Google Scholar 

  2. Pal’guev, S.F., Vysokotemperaturnye protonnye tverdye elektrolity (High-Temperature Proton Solid Electrolytes), Yekaterinburg: Ural Branch, Russian Academy of Sciences, 1998.

    Google Scholar 

  3. Norby, T., Solid State Ionics, 1999, vol. 125, p. 1.

    Article  CAS  Google Scholar 

  4. Schober, T., Solid State Ionics, 2003, vols. 162–163, p. 277.

    Article  Google Scholar 

  5. Ivanov-Shits, A. and Murin, I., Ionika tverdogo tela (Solid State Ionics), St. Petersburg: S.-Peterb. Univ., 2010, vol. 2.

    Google Scholar 

  6. Malavasi, L., Fisher, C.A., and Islam, M.S., Chem. Soc. Rev., 2010, vol. 39, p. 4370.

    Article  CAS  Google Scholar 

  7. Tanaka, M., Katahira, K., Asakura, Y., Uda, T., Iwahara, H., and Yamamoto, I., J. Nucl. Sci. Technol., 2004, vol. 41, p. 61.

    Article  CAS  Google Scholar 

  8. Shi, Ch., Yoshino, M., and Morinaga, M., Solid State Ionics, 2005, vol. 176, p. 1091.

    Article  CAS  Google Scholar 

  9. Kurita, N., Xiong, Yue-P., Imai, Y., and Fukatsu, N., Ionics, 2010, vol. 16, p. 787.

    Article  CAS  Google Scholar 

  10. Suzuki, A., Muroga, T., Yoneoka, T., and Tanaka, S., J. Phys. Chem. Solids, 2005, vol. 66, p. 690.

    Article  CAS  Google Scholar 

  11. Kondo, M., Muroga, T., Katahira, K., and Oshima, T., J. Power Energy Syst., 2008, vol. 2, p. 590.

    Article  Google Scholar 

  12. Kurita, N., Fukatsu, N., Ito, K., and Ohashi, T., J. Electrochem. Soc., 1995, vol. 142, p. 1552.

    Article  CAS  Google Scholar 

  13. Gorelov, V.P., Vykhodetz, V.B., Kurennykh, T.E., Balakireva, V.B., Kuz’min, A.N., and Anan’ev, M.V., Russ. J. Electrochem., 2013, vol. 49, p. 915.

    Article  CAS  Google Scholar 

  14. Gorelov, V.P., Balakireva, V.B., Kuz’min, A.V., and Plaksin, S.V., Neorg. Mater., 2014, vol. 50, p. 535.

    Article  Google Scholar 

  15. Gorelov, V.P., Balakireva, V.B., and Kuz’min, A.V., Fiz. Tverd. Tela, 2016, vol. 58, p. 14.

    Google Scholar 

  16. Gorelov, V.P. and Balakireva, V.B., Izv. Akad. Nauk SSSR, Neorg. Mater., 1990, vol. 26, p. 102.

    CAS  Google Scholar 

  17. Anan’ev, M.V., Bershitskaya, N.M., Plaksin, S.V., and Kurumchin, E.H., Russ. J. Electrochem., 2012, vol. 48, p. 879.

    Article  Google Scholar 

  18. Gorelov, V.P., Sharova, N.V., and Sokolova, Yu.V., Russ. J. Electrochem., 1997, vol. 33, p. 1351.

    CAS  Google Scholar 

  19. Arestova, N.V. and Gorelov, V.P., Elektrokhimiya, 1994, vol. 30, p. 988.

    CAS  Google Scholar 

  20. Fadeev, G.I., Volkov, A.N., Kalyakin, A.S., Demin, A.K., Gorelov, V.P., Neuimin, A.D., and Balakireva, V.B., RF Patent 2483298, 2013.

    Google Scholar 

  21. Demin, A.K., Volkov, A.N., Kalyakin, A.S., Fadeev, G.I., Gorelov, V.P., and Kuz’min, A.V., RF Patent 2483300, 2013.

    Google Scholar 

  22. Volkov, A.N., Kalyakin, A.S., Fadeev, G.I., Demin, A.K., and Gorelov, V.P., RF Patent 2490623, 2013.

    Google Scholar 

  23. Bao, J., Ohno, H., Kurita, N., Okuyama, Y., and Fukatsu, N., Electrochim. Acta, 2011, vol. 56, p. 1062.

    Article  CAS  Google Scholar 

  24. Kreuer, K.D., Ann. Rev. Mater. Res., 2003, vol. 33, p. 333.

    Article  CAS  Google Scholar 

  25. Islam, M.S., Davies, R.A., and Gale, J.D., Chem. Mater., 2001, vol. 13, p. 2049.

    Article  CAS  Google Scholar 

  26. Løken, A., Kjølseth, Ch., and Haugsrud, R., J. Alloys Compd., 2014, vol. 267, p. 61.

    Google Scholar 

  27. Balakireva, V.B., Kuz’min, A.V., and Gorelov, V.P., Russ. J. Electrochem., 2010, vol. 46, p. 749.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Gorelov.

Additional information

Original Russian Text © V.P. Gorelov, V.B. Balakireva, A.V. Kuz’min, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 11, pp. 1206–1212.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelov, V.P., Balakireva, V.B. & Kuz’min, A.V. Ion conductivity of perovskites CaZr1 – x Sc x O3 – α (x = 0.03–0.20) in hydrogen-containing atmospheres. Russ J Electrochem 52, 1076–1081 (2016). https://doi.org/10.1134/S1023193516110069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516110069

Keywords

Navigation