Skip to main content
Log in

Experimental investigation and multiphysics simulation on the influence of micro tools with various end profiles on diametrical overcut of holes machined using electrochemical micromachining for a predetermined optimum combination of process parameters

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical micromachining (EMM) process is generally applied to shaping of electrically conductive materials which has been gaining popularity in the production of biomedical, MEMS, aerospace and nuclear components. The dimensional accuracy is affected by various process parameters of EMM and by the end profile of the cathode (tool) used to machine the feature. In this study, it is proposed to investigate the EMM process to know the influence of various process parameters on the diametrical overcut of the machined hole and the optimum combination of process parameters to produce holes with minimum diametrical over cut. A bare electrode with flat end is used for this purpose. Later, insulated electrode with flat end and bare electrodes with various end profiles are used to drill holes at the optimum combination of process parameters on Titanium grade II sheet to identify the most suitable micro tool to produce holes with minimum diametrical overcut and minimum stray machined zone. The EMM process of drilling holes using insulated electrode with flat end and bare electrodes with various end profiles are simulated at the optimum combination of process parameters using COMSOL Multiphysics V4.2a software. Results justified the use of multiphysics simulation to understand the process before conducting experiments so that costly trial and error experiments can be reduced to a minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, D., Zeng, Y.B., Xu, Z.Y., and Zhang, X.Y., CIRP Annals-Manufacturing Technology, 2011, vol. 60, p. 247.

    Article  Google Scholar 

  2. Dayanand, S.B., Jain, V.K., Shekhar, R., and Shaifadi Mehrotra, Journal of Materials Processing Technology, 2004, vol. 149, p. 445.

    Article  Google Scholar 

  3. Mohan, S. and Shan, H.S., International Journal of Machine Tools and Manufacture, 2005, vol. 45, p. 137.

    Article  Google Scholar 

  4. De Silva, A.K.M., Altena, H.S.J., and McGeough, J.A., Annals of the CIRP, 2000, vol. 49, no. 1, p. 151.

    Article  Google Scholar 

  5. Chan Hee Jo, Bo Hyun Kim, and Chong Nam Chu, CIRP Annals-Manufacturing Technology, 2009, vol. 58, p. 181.

    Article  Google Scholar 

  6. Bhattacharya, B. and Munda, J., Journal of Materials Processing Technology, 2003, vol. 140, p. 287.

    Article  Google Scholar 

  7. Matthias Hackert-Oschatzchen, Michael Kowalick, and Gunnar Meichsner, Proc. COMSOL Conference, 2012, Milan, Italy.

    Google Scholar 

  8. Van Tijum, R. and Pajak, P.T., Proc. COMSOL Conference, 2008, Hannover, Germany.

    Google Scholar 

  9. Xiaolong Fang, Ningsong Qu, and Yudong Zhang, Journal of Materials Processing Technology, 2014, vol. 214, p. 36.

    Article  CAS  Google Scholar 

  10. Deconinck, D., Van Damme, S., and Deconinck, J., Electrochimica Acta, 2012, vol. 60, p. 321.

    Article  CAS  Google Scholar 

  11. Deconinck, D., Van Damme, S., and Deconinck, J., Electrochimica Acta, 2012, vol. 69, p. 120.

    Article  CAS  Google Scholar 

  12. Deconinck, D., Hoogsteen, W., and Deconinck, J., Electrochimica Acta, 2013, vol. 103, p. 161.

    Article  CAS  Google Scholar 

  13. Zhaoyang Zhang and Di Zhu, Russian Journal of Electrochemistry, 2008, vol. 44, no. 8, p. 926.

    Article  CAS  Google Scholar 

  14. Ross, P.J., Taguchi Techniques for Quality Engineering, Mc Graw Hill, 1996.

    Google Scholar 

  15. Jain, V.K., Kanetkar, Y., and Lal, G.K., International Journal of Advanced Manufacturing Technology, 2005, vol. 26, p. 527.

    Article  Google Scholar 

  16. Dayanand, S.B., Jain, V.K., Shekar, R., and Anjali V. Kulkarni, International Journal of Advanced Manufacturing Technology, 2007, vol. 34, p. 79.

    Article  Google Scholar 

  17. Liu Young, Zhu Di, Zeng Yongbin, Huang Shaofu, and Yu Hongbing, Chinese Journal of Aeronautics, 2010, vol. 23, p. 578.

    Article  Google Scholar 

  18. Hocheng, H., Sun, Y.H., Lin, S.C., Kao, P.S., Journal of Materials Processing Technology, 2003, vol. 140, p. 264.

    Article  CAS  Google Scholar 

  19. Yong Liu, Di Zhu, Yongbin Zeng, and Hongbing Yu, Journal of Advanced Manufacturing Technology, 2011, vol. 55, p. 195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Pratheesh Kumar.

Additional information

Published in Russian in Elektrokhimiya, 2016, Vol. 52, No. 10, pp. 1059–1072.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratheesh Kumar, M.R., Prakasan, K. & Kalaichelvan, K. Experimental investigation and multiphysics simulation on the influence of micro tools with various end profiles on diametrical overcut of holes machined using electrochemical micromachining for a predetermined optimum combination of process parameters. Russ J Electrochem 52, 943–954 (2016). https://doi.org/10.1134/S1023193516100104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516100104

Keywords

Navigation