Skip to main content
Log in

Comparison of different carbon nanostructures influence on potentiometric performance of carbon paste electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Recently, different carbon nanomaterials were introduced for construction of electrochemical sensors. In this study, the influence of carbon nanomaterial on performance of carbon paste potentiometric electrode was investigated. In this manner, different kinds of carbon nanomaterial, i.e., graphene, graphene oxide and carbon nanotube (CNT) were used as a conduction phase in carbon paste electrode. Then, potentiometric characteristics of the corresponding paste electrodes such as calibration slope, linear range, detection limit, response time and stability were compared with each other. The results appeared comprehensive findings about the role of electrode’s content in electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Švancara, I., Vytřas, K., Barek, J., and Zima, J., Crit. Rev. Anal. Chem., 2001, vol. 31, p. 311.

    Article  Google Scholar 

  2. Švancara, I., Vytřas, K., Kalcher, K., Walcarius, A., and Wang, J., Electroanalysis, 2009, vol. 21, p. 7.

    Article  Google Scholar 

  3. Lindquist, J., J. Electroanal. Chem. Interfacial Electrochem., 1974, vol. 52, p. 37.

    Article  CAS  Google Scholar 

  4. Kalcher, K., Kauffmann, J.-M., and Wang, J., Electroanalysis, 1995, vol. 7, p. 5.

    Article  CAS  Google Scholar 

  5. Stanic, Z. and Girousi, S., Sens. Electroanal., 2011, vol. 6, p. 89.

    Google Scholar 

  6. Safavi, A., Maleki, N., Honarasa, F., Tajabadi, F., and Sedaghatpour, F., Electroanalysis, 2007, vol. 19, p. 582.

    Article  CAS  Google Scholar 

  7. Švancara, I. and Schachl, K., Chem. List., 1999, vol. 499, p. 490.

    Google Scholar 

  8. Lowinsohn, D., Gan, P., Tschulik, K., Foord, J.S., and Compton, R.G., Electroanalysis, 2013, vol. 25, p. 2435.

    Article  CAS  Google Scholar 

  9. Maleki, N., Safavi, A., and Tajabadi, F., Anal. Chem., 2006, vol. 78, p. 3820.

    Article  CAS  Google Scholar 

  10. Safavi, A., Maleki, N., Aghakhani Mahyari, F., and Doroodmand, M.M., Fullerenes, Nanotub. Carbon Nanostructures, 2013, vol. 21, p. 472.

    Article  CAS  Google Scholar 

  11. Wang, J., Electroanalysis, 2005, vol. 17, p. 7.

    Article  CAS  Google Scholar 

  12. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I., and Lin, Y., Electroanalysis, 2010, vol. 22, p. 1027.

    Article  CAS  Google Scholar 

  13. Mordkovich, V.Z. and Karaeva, A.R., Fullerenes, Nanotub. Carbon Nanostructures, 2010, vol. 18, p. 516.

    Article  CAS  Google Scholar 

  14. Goze, C., Vaccarini, L., Henrard, L., Bernier, P., Hemandez, E., and Rubio, A., Synth. Met., 1999, vol. 103, p. 2500.

    Article  CAS  Google Scholar 

  15. Kaneto, K., Tsuruta, M., Sakai, G., Cho, W. Y., and Ando, Y., Synth. Met., 1999, vol. 103, p. 2543.

    Article  CAS  Google Scholar 

  16. Valentini, F., Amine, A., Orlanducci, S., Terranova, M.L., and Palleschi, G., Anal. Chem., 2003, vol. 75, p. 5413.

    Article  CAS  Google Scholar 

  17. Rivas, G., Rubianes, M.D., Pedano, M.L., Ferreyra, N.F., Luque, G.L., Rodríguez, M.C., and Miscoria, S., Electroanalysis, 2007, vol. 19, p. 823.

    Article  CAS  Google Scholar 

  18. Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., and Braet, F., Angew. Chem. Int. Ed. Engl., 2010, vol. 49, p. 2114.

    Article  CAS  Google Scholar 

  19. Chen, M.L., Park, C.Y., Meng, Z.D., Zhu, L., Choi, J.G., Ghosh, T., Kim, I.J., Yang, S., Bae, M.K., Zhang, F.J., and Oh, W.C., Fullerenes Nanotub. Carbon Nanostructures, 2013, vol. 21, p. 525.

    Article  CAS  Google Scholar 

  20. Alwarappan, S., Erdem, A., Liu, C., and Li, C., J. Phys. Chem. C, 2009, vol. 113, p. 8853.

    Article  CAS  Google Scholar 

  21. Wang, Y., Li, Y., Tang, L., Lu, J., and Li, J., Electrochem. Commun., 2009, vol. 11, p. 889.

    Article  CAS  Google Scholar 

  22. Kovtyukhova, N.I., Ollivier, P.J., Martin, B.R., Mallouk, T.E., Chizhik, S., Buzaneva, E.V., and Gorchinskiy, A.D., Chem. Mater., 1999, vol. 11, p. 771.

    Article  CAS  Google Scholar 

  23. Wang, Y., Li, Y., Tang, L., Lu, J., and Li, J., Electrochem. Commun., 2009, vol. 11, p. 889.

    Article  CAS  Google Scholar 

  24. Shamsipur, M., Tashkhourian, J., Hemmateenejad, B., and Sharghi, H., Talanta, 2004, vol. 64, p. 590.

    Article  CAS  Google Scholar 

  25. Ceresa, A., Sokalski, T., and Pretsch, E., J. Electroanal. Chem., 2001, vol. 501, p. 70.

    Article  CAS  Google Scholar 

  26. Marinho, B., Ghislandi, M., Tkalya, E., Koning, C.E., and With, G., Powder Technol., 2012, vol. 221, p. 351.

    Article  CAS  Google Scholar 

  27. Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S., Chem. Soc. Rev., 2010, vol. 39, p. 228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Honarasa.

Additional information

Published in Russian in Elektrokhimiya, 2016, Vol. 52, No. 10, pp. 1073–1078.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honarasa, F., Zare, M. & Yousefinejad, S. Comparison of different carbon nanostructures influence on potentiometric performance of carbon paste electrode. Russ J Electrochem 52, 955–959 (2016). https://doi.org/10.1134/S1023193516100050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516100050

Keywords

Navigation