Skip to main content
Log in

Electric capacity of electrochemical capacitors with composite electrodes based on the aluminum–active carbon system

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electric capacity of electrochemical capacitors with composite electrodes obtained by laser microstructuring was studied. The obtained electrodes allowed control of the contribution of the resistance of the electrode material and electrolyte to the total equivalent series resistance of the electrochemical capacitor. This allowed us to determine their effect on the resulting characteristics of the capacitors. The dependences of the specific electric capacity on the parameters of the composite structure of electrodes were studied, and the optimum parameters were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kotz, R. and Carlen, M., Electrochim. Acta, 2000, vol. 45, p. 2483.

    Article  CAS  Google Scholar 

  2. Sarangapani, S., Tilak, B.V., and Chen, C.P., J. Electrochem. Soc., 1996, vol. 143, p. 3791.

    Article  CAS  Google Scholar 

  3. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., and Zhang, L., Int. J. Hydrogen Energy, 2009, vol. 34, p. 4889.

    Article  CAS  Google Scholar 

  4. Burke, A., J. Power Sources, 2000, vol. 91, p. 37.

    Article  CAS  Google Scholar 

  5. Gogotsi, Y. and Simon, P., Mater. Sci., 2011, vol. 334, p. 917.

    CAS  Google Scholar 

  6. Simon, P. and Gogotsi, Y., Nat. Mater., 2008, vol. 7, p. 845.

    Article  CAS  Google Scholar 

  7. Wang, G., Zhang, L., and Zhang, J., Chem. Soc. Rev., 2012, vol. 41, p. 797.

    Article  CAS  Google Scholar 

  8. Yu, G., Xie, X., Pan, L., Bao, Zh., and Cui, Y., Nano Energy, 2013, vol. 2, p. 213.

    Article  CAS  Google Scholar 

  9. Solyanikova, A.S., Chayka, M.Yu., Boryak, A.V., Kravchenko, T.A., Glotov, A.V., Ponomarenko, I.V., and Kirik, S.D., Russ. J. Electrochem., 2014, vol. 50, p. 419.

    Article  CAS  Google Scholar 

  10. Liang, Y.Y., Schwab, M.G., Zhi, L.J., Mugnaioli, E., Kolb, U., Feng, X.L., and Mullen, K., J. Am. Chem. Soc., 2010, vol. 132, p. 15030.

    Article  CAS  Google Scholar 

  11. Lee, K.K., Chin, W.S., and Sow, C.H., J. Mater. Chem. A, 2014, vol. 2, p. 17212.

    Article  CAS  Google Scholar 

  12. Nizhegorodova, A.O. and Kondratiev, V.V., Russ. J. Electrochem., 2014, vol. 52, p. 1157.

    Article  Google Scholar 

  13. Pan, L., Qiu, H., Dou, C., Li, Y., Pu, L., Xu, J., and Shi, Y., Int. J. Mol. Sci., 2010, vol. 11, p. 2636.

    Article  CAS  Google Scholar 

  14. Pandolfo, A.G. and Hollenkamp, A.F., J. Power Sources, 2006, vol. 157, p. 11.

    Article  CAS  Google Scholar 

  15. Zhang, L.L. and Zhao, X.S., Chem. Soc. Rev., 2009, vol. 38, p. 2520.

    Article  CAS  Google Scholar 

  16. Frackowiak, E., Phys. Chem. Chem. Phys., 2013, vol. 9, p. 1774.

    Article  Google Scholar 

  17. Lee, S.W., Gallant, B.M., Byon, H.R., Hammond, P.T., and Shao-Horn, Y., Energy Environ. Sci., 2011, vol. 4, p. 1972.

    Article  CAS  Google Scholar 

  18. Biener, J., Stadermann, M., Suss, M., Worsley, M.A., Biener, M.M., Rose, K.A., and Baumann, T.F., Energy Environ. Sci., 2011, vol. 4, p. 656.

    Article  CAS  Google Scholar 

  19. Kaempgen, M., Chan, C.K., Ma, J., Cui, Y., and Gruner, G., Nano Lett., 2009, vol. 9, p. 1872.

    Article  CAS  Google Scholar 

  20. Izadi-Najafabadi, A., Yasuda, S., Kobashi, K., Yamada, T., Futaba, D.N., Yasuda, S., Hatori, H., Yumura, M., Iijima, S., and Hata, K., Adv. Mater., 2010, vol. 22, p. E235.

    Article  CAS  Google Scholar 

  21. Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P., and Gogotsi, Y., Science, 2010, vol. 328, p. 480.

    Article  CAS  Google Scholar 

  22. Miller, J.R. and Simon, P., Science, 2008, vol. 321, p. 651.

    Article  CAS  Google Scholar 

  23. Liu, C., Yu, Z., Neff, D., Zhamu, A., and Jang, B.Z., Nano Lett., 2010, vol. 10, p. 4863.

    Article  CAS  Google Scholar 

  24. Stoller, M.D., Park, S., Zhu, Y., An, J., and Ruoff, R.S., Nano Lett., 2008, vol. 8, p. 3498.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Pisareva.

Additional information

Original Russian Text © T.A. Pisareva, E.V. Kharanzhevskii, S.M. Reshetnikov, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 8, pp. 851–859.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisareva, T.A., Kharanzhevskii, E.V. & Reshetnikov, S.M. Electric capacity of electrochemical capacitors with composite electrodes based on the aluminum–active carbon system. Russ J Electrochem 52, 762–769 (2016). https://doi.org/10.1134/S1023193516080085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516080085

Keywords

Navigation