Advertisement

Russian Journal of Electrochemistry

, Volume 52, Issue 7, pp 662–668 | Cite as

Comparison of characteristics of solid oxide fuel cells with YSZ and CGO film solid electrolytes formed using magnetron sputtering technique

  • A. A. Solov’ev
  • A. V. Shipilova
  • A. N. Koval’chuk
  • I. V. Ionov
  • S. V. Rabotkin
Article
  • 53 Downloads

Abstract

The work describes the methods of manufacturing single cells of solid oxide fuel cell (SOFC) with thin–film YSZ and CGO electrolytes and also with the bilayer YSZ/CGO electrolyte. Formation of YSZ and CGO films on the supporting NiO–YSZ anode of SOFC was carried out using the combined electron–ionic–plasma deposition technique. The microstructure and phase composition of the formed coatings are studied and also comparative analysis of electrochemical characteristics of single fuel cells with different electrolytes is performed. It is shown that the maximum power density of 1.35 W/cm2 at the temperature of 800°C is obtained for the cell with bilayer YSZ/CGO electrolyte. However, the highest performance at lower working temperatures (650–700°C) is characteristic for the fuel cell with single–layer CGO electrolyte; its power density is 600–650 mW/cm2.

Keywords

solid oxide fuel cell CGO YSZ bilayer electrolyte magnetron sputtering pulsed electron–beam treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kek, D., Panjan, P., Wanzenberg, E., and Jamnik, J., J.Eur. Ceram. Soc., 2001, vol. 21, p. 1861.CrossRefGoogle Scholar
  2. 2.
    Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C.S., Pennycook J., and Santamaria, J., Science, 2008, vol. 321, p. 676.CrossRefGoogle Scholar
  3. 3.
    Hobein, B., Tietz, F., Stover, D., Cekada, M., and Panjan, P., J.Eur. Ceram. Soc., 2001, vol. 21, p. 1843.CrossRefGoogle Scholar
  4. 4.
    Wang, Z., Cheng, M., Dong, Y., Zhang, M., and Zhang, H., J.Power Sources, 2006, vol. 156, p. 306.CrossRefGoogle Scholar
  5. 5.
    Qiu, L., Ichikawa, T., Hirano, A., Imanishi, N., and Takeda, Y., Solid State Ionics, 2003, vol. 158, nos. 1–2, p. 55.CrossRefGoogle Scholar
  6. 6.
    Marinha, D., Hayd, J., Dessemond, L., Ivers-Tiffee, E., and Djurado, E., J.Power Sources, 2011, vol. 196, p. 5084.CrossRefGoogle Scholar
  7. 7.
    Ni, D.W. and Esposito, V., J.Power Sources, 2014, vol. 266, p. 393.CrossRefGoogle Scholar
  8. 8.
    Sonderby, S., Klemenso, T., Christensen, B.H., Almtoft, K.P., Lu, J., Nielsen, L.P., and Eklund, P., J.Power Sources, 2014, vol. 267, p. 452.CrossRefGoogle Scholar
  9. 9.
    Constantin, G., Rossignol, C., Briois, P., Billard, A., Dessemond, L., and Djurado, E., Solid State Ionics, 2013, vol. 249–250, p. 98.CrossRefGoogle Scholar
  10. 10.
    Jordan, N., Assenmacher, W., Uhlenbruck, S., Haanappel, V.A.C., Buchkremer, H.P., Stover, D., and Mader, W., Solid State Ionics, 2008, vol. 179, p. 919.CrossRefGoogle Scholar
  11. 11.
    Kharton, V.V., Marques, F.M.B., and Atkinson, A., Solid State Ionics, 2004, vol. 174, nos. 1–4, p. 135.CrossRefGoogle Scholar
  12. 12.
    Kuo, Y.L., Chen, Y.S., and Lee, C., J.Eur. Ceram. Soc., 2011, vol. 31, p. 3127.CrossRefGoogle Scholar
  13. 13.
    Laukaitis, G. and Dudonis, J., J.Alloys Compd., 2008, vol. 459, p. 320.CrossRefGoogle Scholar
  14. 14.
    Pryds, N., Rodrigo, K., Linderoth, S., and Schou, J., Appl. Surface Sci., 2009, vol. 255, p. 5232.CrossRefGoogle Scholar
  15. 15.
    Uhlenbruck, S., Moskalewicz, T., Jordan, N., Penkalla, H.-J., and Buchkremer, H.P., Solid State Ionics, 2009, vol. 180, p. 418.CrossRefGoogle Scholar
  16. 16.
    Uhlenbruck, S., Jordan, N., Sebold, D., Buchkremer, H.P., Haanappel, V.A.C., and Stover, D., Thin Solid Films, 2007, vol. 515, p. 4053.CrossRefGoogle Scholar
  17. 17.
    Wu, W., Liu, Z., Zhao, Z., Zhang, X., Ou, D., Tu, B., Cui, D., and Cheng, M., Chin. J. Catal., 2014, vol. 35, p. 1376.CrossRefGoogle Scholar
  18. 18.
    Sochugov, N.S., Soloviev, A.A., Shipilova, A.V., and Rotshtain, V.P., Intern. J. Hydrogen Energy, 2011, vol. 36, p. 5550.CrossRefGoogle Scholar
  19. 19.
    Solovyev, A.A., Sochugov, N.S., Shipilova, A.V., Efimova, K.B., and Tumashevskaya, A.E., Russ. J. Electrochem., 2011, vol. 47, p. 494.CrossRefGoogle Scholar
  20. 20.
    Choi, H., Cho, G.Y., and Cha, S.W., Int. J. Precis. Eng. Manuf. Green Technol., 2014, vol. 1, p. 95.CrossRefGoogle Scholar
  21. 21.
    Fonseca, F.C., Uhlenbruck, S., Nedelec, R., Sebold, D., and Buchkremer, H.P., J.Electrochem. Soc., 2010, vol. 157, p. 1515.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Solov’ev
    • 1
  • A. V. Shipilova
    • 1
  • A. N. Koval’chuk
    • 1
  • I. V. Ionov
    • 2
  • S. V. Rabotkin
    • 2
  1. 1.Tomsk Polytechnical UniversityTomskRussia
  2. 2.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations