Skip to main content
Log in

Electrotransport properties of SOFC cathode materials based on lanthanum cuprate doped with praseodymium and strontium oxides

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A complex study of thermal, conducting, and electrocatalytic properties of cuprates La1.8‒x Pr x Sr0.2CuO4–δ (х = 0.2; 0.4) with the K2NiF4 structure is carried out in order to assess their prospects as the cathode materials for solid-oxide fuel cells. The thermal analysis reveals stability of samples heated up to 950°С in air. The conductivity of cuprates measured in the temperature range of 100–900°С and the partial oxygen pressure from 10–3 to 1 atm is of the metallic nature and varies from 70 to 40 S/cm in the temperature interval of 500–900°С in air. The studies of chemical stability of cuprates with respect to solid electrolytes demonstrate the absence of their chemical interaction with Ce0.9Gd0.1O1.95 (GDC) at 900°С and with La0.8Sr0.2Ga0.85Mg0.15O3–δ (LSGM) at 1000°C after 25 h annealing. For La1.6Pr0.2Sr0.2CuO4–δ electrodes deposited on the surface of GDC or LSGM solid electrolytes, the studies of electrocatalytic activity in the oxygen reduction reaction demonstrate that the smallest polarization resistance is typical of electrodes deposited on the GDC surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilner, J.A. and Burriel, M., Annu. Rev. Mater. Res., 2014, vol. 44, p. 365.

    Article  CAS  Google Scholar 

  2. Orera, A. and Slater, P.R., Chem. Mater., 2010, vol. 22, p. 675.

    Article  CAS  Google Scholar 

  3. Tarancon, A., Burriel, M., Santiso, J., Skinner, S.J., and Kilner, J.A., J.Mater. Chem., 2010, vol. 20, p. 3799.

    Article  CAS  Google Scholar 

  4. Hwang, H.Y., Cheong, S.-W., Cooper, A.S., Rupp, L.W., Jr., Batlogg, B., Kwei, G.H., and Tan, Z., Physica C, 1992, vol. 192, p. 362.

    Article  CAS  Google Scholar 

  5. Mazo, G.N., Kazakov, S.M., Kolchina, L.M., Istomin, S.Ya., Antipov, E.V., Lyskov, N.V., Galin, M.Z., Leonova, L.S., Fedotov, Yu.S., Bredikhin, S.I., Liu, Yi., Svensson, G., and Shen, Z., Solid State Ionics, 2014, vol. 257, p. 67.

    Article  CAS  Google Scholar 

  6. Kovalevsky, A.V., Kharton, V.V., Yaremchenko, A.A., Pivak, Y.V., Naumovich, E.N., and Frade, J.R., J.Eur. Ceram. Soc., 2007, vol. 27, p. 4269.

    Article  CAS  Google Scholar 

  7. Zhou, X.-D., Templeton, J.W., Nie, Z., Chen, H., Stevenson, J.W., and Pederson, L.R., Electrochim. Acta, 2012, vol. 71, p. 44.

    Article  CAS  Google Scholar 

  8. Boehm, E., Bassat, J.-M., Dordor, P., Mauvy, F., Grenier, J.-C., and Stevens, Ph., Solid State Ionics, 2005, vol. 176, p. 2717.

    Article  CAS  Google Scholar 

  9. Li, Q., Zhao, H., Huo, L., Sun, L., Cheng, X., and Grenier, J.C., Electrochem. Commun., 2007, vol. 9, p. 1508.

    Article  CAS  Google Scholar 

  10. Mazo, G.N., Kazakov, S.M., Kolchina, L.M., Morozov, A.V., Istomin, S.Ya., Lyskov, N.V., Gippius, A.A., and Antipov, E.V., J.Alloys Compd., 2015, vol. 639, p. 381.

    Article  CAS  Google Scholar 

  11. Lyskov, N.V., Kaluzhskikh, M.S., Leonova, L.S., Mazo, G.N., Istomin, S.Ya., and Antipov, E.V., Int. J. Hydrogen Energy, 2012, vol. 37, p. 18357.

    Article  CAS  Google Scholar 

  12. Zheng, K., Gorzkowska-Sobasґ, A., and Sґwierczek, K., Mater. Res. Bull., 2012, vol. 47, p. 4089.

    Article  CAS  Google Scholar 

  13. Tsipis, E.V. and Kharton, V.V., J.Solid-State Electrochem., 2008, vol. 12, p. 1367.

    Article  CAS  Google Scholar 

  14. Hayashi, H., Kanoh, M., Quan, C.J., Inaba, H., Wang, S., Dokiya, M., and Tagawa, H., Solid State Ionics, 2000, vol. 132, p. 227.

    Article  CAS  Google Scholar 

  15. Cong, L., He, T., Ji, Y., Guan, P., Huang, Y., and Su, W., J.Alloys Compd., 2003, vol. 348, p. 325.

    Article  CAS  Google Scholar 

  16. Shannon, R.D., Acta Crystallogr., Sect. A, 1976, vol. 32, p. 751.

    Article  Google Scholar 

  17. Shen, L., Salvador, P., Mason, T.O., and Fueki, K., J.Phys. Chem. Solids, 1996, vol. 57, p. 1977.

    Article  CAS  Google Scholar 

  18. Hong, D.J.L. and Smyth, D.M., J.Solid State Chem., 1993, vol. 102, p. 250.

    Article  CAS  Google Scholar 

  19. Anderson, P.W., Phys. Rev., 1958, vol. 109, p. 1492.

    Article  CAS  Google Scholar 

  20. Suda, E., Pacaud, B., and Mori, M., J.Alloys Compd., 2006, vol. 408-412, p. 1161.

    Article  CAS  Google Scholar 

  21. Chiba, R., Taguchi, H., Komatu, T., Orui, H., Nozawa, K., and Araiet, H., Solid State Ionics, 2011, vol. 197, p. 42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Lyskov.

Additional information

Original Russian Text © N.V. Lyskov, L.M. Kolchina, P.P. Pestrikov, G.N. Mazo, E.V. Antipov, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 7, pp. 718–724.

Published on the basis of the materials of III All-Russia Conference “Fuel Cells and Power Plants on Their Basis,” Chernogolovka, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyskov, N.V., Kolchina, L.M., Pestrikov, P.P. et al. Electrotransport properties of SOFC cathode materials based on lanthanum cuprate doped with praseodymium and strontium oxides. Russ J Electrochem 52, 642–647 (2016). https://doi.org/10.1134/S1023193516070120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516070120

Keywords

Navigation