Skip to main content
Log in

MWCNTs@Rubeanic acid nanosensor for ultra sensitive quantification of bismuth in groundwater and soil

  • Short Communications
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Voltammetric determination of bismuth was made using a carbon paste electrode modified with carbon nanotube-encapsulated rubeanic acid. The anodic stripping voltammetry on the MWCNTs@Rubeanic acid composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for bismuth. Comparing a non-encapsulated MWCNTs composite electrode with an in-situ capsulated MWCNTs@Rubeanic electrode, the MWCNTs@Rubeanic composite electrode exhibited superior performance due to its complexation with Bi ion. The limit of detection of the sensor was 0.8 ng/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kokkinos, C., Economou, A., and Koupparis, M., Talanta, 2009, vol. 77, pp. 1137–1142.

    Article  CAS  Google Scholar 

  2. Kokkinos, C., Economou, A., Raptis, I., and Speliotis, T., Anal. Chim. Acta, 2009, vol. 622, pp. 111–118.

    Article  Google Scholar 

  3. Abbasi, S., Farmany, A., and Mortazavi, S.S., Electroanalysis, vol. 22, pp. 2884–2888.

  4. Abbasi, S., Daneshfar, A., Hamdghadareh, S., and Farmany, A., Int. J. Electrochem. Sci., 2011, vol. 6, pp. 4843–4852.

    CAS  Google Scholar 

  5. Wang, J., Lu, J., Hocevar, S.B., Farias, P.A.M., and Ogorevic, B., Anal. Chem., 2000, vol. 72, p. 3218.

    Article  CAS  Google Scholar 

  6. Honeychurch, K.C., Hawkins, D.M., Hart, J.P., and Cowell, D.C., Talanta, 2002, vol. 57, p. 565.

    Article  CAS  Google Scholar 

  7. Legeai, S., Soropogui, K., Cretinon, M., Vittori, O., Oliveria, A.H.D., Barbier, F., and Loustalot, M.F.G., Anal. Bioanal. Chem., 2005, vol. 383, p. 839.

    Article  CAS  Google Scholar 

  8. Heidarimoghadam, R. and Farmany, A., Mater. Sci. Eng., Ser. C, 2016, vol. 58, pp. 1242–1245.

    Article  CAS  Google Scholar 

  9. Pecev, T.G., Igov, R.P., Stankov-Jovanović, V.P., and Mitić, V.D., J. Serb. Chem. Soc., 1995, vol. 55, p. 64.

    Google Scholar 

  10. Zhang, L., Mulrooney, S.B., Leung, A.F.K., Zeng, Y., Ko, B.B.C., and Hausinger, R.P., Biometals, 2006, vol. 19, p. 503.

    Article  CAS  Google Scholar 

  11. Jin, L., Szeto, K.Y., Zhang, L., Du, W., and Sun, H., J. Inorg. Biochem., 2004, vol. 98, p. 1331.

    Article  CAS  Google Scholar 

  12. Mihajlović, R.P., Kaljević, V.M., Vukasinović, M.P., Lj, V., and Mihajlović, I.D., Water SA, 2007, vol. 33, p. 513.

    Google Scholar 

  13. Gemus, G., Filik, H., and Demirata, B., Anal. Chim. Acta, 2005, vol. 547, no. 1, p. 138.

    Article  Google Scholar 

  14. Shiyo, Y., Mitsuhashi, M., Shimizu, T., and Sakurai, S., Analyst, 1992, vol. 117, no. 12, p. 1929.

    Article  Google Scholar 

  15. Ivanova, E., Yan, X.P., and Adams, F., Anal. Chim. Acta, 1997, vol. 354, p. 7.

    Article  CAS  Google Scholar 

  16. Giacomelli, M.B.O., Ganzarolli, E.M., and Curtius, A., J. Spectrochim. Acta, Ser. B, 2000, vol. 55, p. 525.

    Article  Google Scholar 

  17. Kang, X., Mai Z., Zou, X., Cai, P., and Mo, J., Anal. Biochem., 2007, vol. 363, pp. 143–150.

    Article  CAS  Google Scholar 

  18. Choong, C.L., Milne, W.I., and Teo, K.B.K., Int. J. Mater. Form, 2008, vol. 1, pp. 117–125.

    Article  Google Scholar 

  19. Jiang, F., Wang, S., Lin, J., Jin, H., Zhang, L., Huang, S., and Wang, J., Electrochem. Commun., 2011, vol. 13, pp. 363–365.

    Article  CAS  Google Scholar 

  20. Soleimani, M. and Ghahraman Afshar, M., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 8719–8729.

    CAS  Google Scholar 

  21. Crespo, G.A., Macho, S., Bobacka, J., and Rius, F.X., Anal. Chem., 2009, vol. 81, p. 676.

    Article  CAS  Google Scholar 

  22. Senthilkumar, S. and Saraswathi, R., J. Appl. Electrochem., 2011, vol. 41, p. 909.

    Article  CAS  Google Scholar 

  23. Sobhanardakani, S., Farmany, A., and Abbasi, S., J. Ind. Eng. Chem., 2014, vol. 20, 25, pp. 3214–3216.

    Article  Google Scholar 

  24. Izadkhah Farmany, A. and Mortazavi, S.S., J. Ind. Eng. Chem., 2015, vol. 21, pp. 994–996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyede Shima Mortazavi.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 2, pp. 247–250.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortazavi, S.S., Farmany, A. MWCNTs@Rubeanic acid nanosensor for ultra sensitive quantification of bismuth in groundwater and soil. Russ J Electrochem 53, 223–226 (2017). https://doi.org/10.1134/S1023193516060033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516060033

Keywords

Navigation