Skip to main content
Log in

Hydrogen storage properties of La1.8Ti0.2MgNi9–x Co x (x = 0, 0.1, 0.3, 0.5) alloys

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

La1.8Ti0.2MgNi9–x Co x (x = 0, 0.1, 0.3, 0.5) alloys were prepared by magnetic levitation melting under argon atmosphere. The effects of Co substitution on the phase structure and the hydrogen storage properties of the alloys were investigated. The results show that LaNi5 and LaMg2Ni9 phases are contained in all experimental alloys. LaNi3 phase disappears and LaNi2 phase appears as x ≥ 0.1 and x ≥ 0.3, respectively. Electrochemical performances have been improved after Co substitution for Ni, for example, the discharge capacity and the high rate dischargeability (HRD) reach the maximum at x = 0.1, and the optimum cycling stability is obtained at x = 0.5. The positive impact of Co on the hydrogen diffusion rate in bulk enhances the HRD, but to high Co content (x ≥ 0.3), the unsatisfied hydrogen desorption capability brings relative low HRD compared with the alloy electrode at x = 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohno, T., Yoshida, H., Kawashima, F., Inaba, T., Sakai, I., Yamamoto, M., and Kanda, M., J. Alloys Compd., 2000, vol. 311, p. L5.

    Article  CAS  Google Scholar 

  2. Pan, H.G., Liu, Y.F., Gao, M.X., Lei, Y.Q., and Wang, Q.D., J. Electrochem. Soc., 2003, vol. 150, p. A5657.

    Article  CAS  Google Scholar 

  3. Sun, X.Z., Pan, H.G., Gao, M.X., Li, R., Lin, Y., and Ma, S., Trans. Nonferr. Met. Soc. China, 2006, vol. 16, p. s834.

    Article  Google Scholar 

  4. Dong, X.P., Yang, L.Y., Li, X.T., Wang, Q., Ma, L.H., and Lin, Y.F., J. Rare Earth., 2011, vol. 29, p. 143.

    Article  CAS  Google Scholar 

  5. Zhang, Y.H., Li, B.W., Ren, H.P., Wu, Z.W., Dong, X.P., and Wang, X.L., Rare Met. Mat. Eng., 2009, vol. 38, p. 941.

    Article  CAS  Google Scholar 

  6. Dong, Z.W., Ma, L.Q., Shen, X.D., Wang, L.M., Wu, Y.M., and Wang, L.D., Int. J. Hydrogen En., 2011, vol. 36, p. 893.

    Article  CAS  Google Scholar 

  7. Guo, J., Huang, D., Li, G.X., Ma, S.Y., and Wei, W.L., Mater. Sci. Eng., Ser. B, 2006, vol. 131, p. 169.

    Article  Google Scholar 

  8. Jiang, W.Q., Lan, Z.Q., Xu, L.Q., Li, G.X., and Guo, J., Int. J. Hydrogen En., 2009, vol. 34, p. 4827.

    Article  CAS  Google Scholar 

  9. Zhang, X.B., Sun, D.Z., Yin, W.Y., Chai, Y.J., and Zhao, M.S., J. Solid State Electrochem., 2006, vol. 10, p. 236.

    Article  CAS  Google Scholar 

  10. Zhao, X.L., Zhang, Y.H., Li, B.W., Ren, H.P., Dong, X.P., and Wang, X.L., J. Alloys Compd., 2008, vol. 454, p. 437.

    Article  CAS  Google Scholar 

  11. Liu, Y.F., Pan, H.G., Gao, M.X., Li, R., and Lei, Y.Q., J. Alloys Compd., 2004, vol. 376, p. 304.

    Article  CAS  Google Scholar 

  12. Gao, Z.J., Luo, Y.C., Lin, Z., Li, R.F., Wang, J.Y., and Kang, L., J. Solid State Electrochem., 2013, vol. 17, p. 727.

    Article  CAS  Google Scholar 

  13. Zheng, X.P., Li, P., Islam, S.H., An, F.Q., Wang, G.Q., and Qu, X.H., Int. J. Hydrogen En., 2007, vol. 32, p. 4957.

    Article  CAS  Google Scholar 

  14. Li, L., Qiu, F.Y., Wang, Y.J., Xu, Y.N., An, C.H., Liu, G., Jiao, L.F., and Yuan, H.T., Int. J. Hydrogen En., 2013, vol. 38, p. 3695.

    Article  CAS  Google Scholar 

  15. Liao, B., Lei, Y.Q., Chen, L.X., Lu, G.L., Pan, H.G., and Wang, Q.D., J. Alloys Compd., 2006, vol. 415, p. 239.

    Article  CAS  Google Scholar 

  16. Miyamura, H., Kuriyama, N., Sakai, T., Oguro, K., Kato, A., Ishikawa, H., and Iwasaki, T., J. Less-Common Met., 1991, vols. 172–174, p. 1205.

    Article  Google Scholar 

  17. Zhang, Y.H., Zhao, D.L., Li, B.W., Zhao, X.L., Wu, Z.W., and Wang, X.L., Int. J. Hydrogen En., 2008, vol. 33, p. 1868.

    Article  CAS  Google Scholar 

  18. Oesterreicher, H., Clinton, J., and Bittner, H., Mater. Res. Bull., 1976, vol. 11, p. 1241.

    Article  CAS  Google Scholar 

  19. Fiorino, M.E., Opila, R.L., Konstadinidas, K., and Fang, W.C., J. Electrochem. Soc., 1996, vol. 143, p. 2422.

    Article  CAS  Google Scholar 

  20. Choquette, Y., Ménard, H., and Brossard, L., Int. J. Hydrogen En., 1990, vol. 15, p. 21.

    Article  CAS  Google Scholar 

  21. Bard, A.J. and Faulkner L.R., Electrochemical Methods: Fundamental and Applications, N.Y.: John Wiley & Sons, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqing Jiang.

Additional information

Published in Russian in Elektrokhimiya, 2016, Vol. 52, No. 5, pp. 491–496.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Guo, J. & Cao, S. Hydrogen storage properties of La1.8Ti0.2MgNi9–x Co x (x = 0, 0.1, 0.3, 0.5) alloys. Russ J Electrochem 52, 435–440 (2016). https://doi.org/10.1134/S1023193516050141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516050141

Keywords

Navigation