Skip to main content
Log in

Structure and electric properties of the hydration shell of a singly charged chloride ion in a nanopore with hydrophilic walls

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of hydrophilic walls on the structure of the hydration shell of a Cl ion is studied in terms of the model flat nanopore in contact with water vapors at room temperature by the Monte Carlo computerassisted simulations. In the field of hydrophilic walls, the hydration shell falls into two parts: the ion-enveloping part and the molecular-film spots spread over the wall surface above and under the ion. Both parts have the pronounced radial-layered structure. The three-dimensional scheme of distribution of the averaged local shell density represents a system of conical coaxial layers expanding in the direction from wall to ion. The effect of forcing out the ion from its own hydration shell is also observed for hydrophilic walls. The specific electric polarizability of the shell is strongly anisotropic. Its longitudinal component is several times larger than the transversal component and behaves nonmonotonically as the hydration shell grows, passing through the maximum. The molecular order near the walls is characterized by the preferential orientation of the molecule plane in parallel to the wall plane and the turn of symmetry axes of molecules in the direction parallel to the normal to the pore plane in the vicinity of the ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 1994, vol. 105, p. 1258.

    CAS  Google Scholar 

  2. Shevkunov, S.V., Russ. J. Electrochem., 1996, vol. 32, p. 867.

    CAS  Google Scholar 

  3. Shevkunov, S.V., Russ. J. Electrochem., 1998, vol. 34, p. 771.

    CAS  Google Scholar 

  4. Shevkunov, S.V., Dokl. Phys. Chem., 1998, vol. 363, p. 392.

    Google Scholar 

  5. Shevkunov, S.V., High Energy Chem., 1999, vol. 33, p. 277.

    CAS  Google Scholar 

  6. Shevkunov, S.V., Russ. J. Electrochem., 2002, vol. 38, p. 300.

    Article  CAS  Google Scholar 

  7. Shevkunov, S.V., Colloid J., 2002, vol. 64, p. 236.

    Article  CAS  Google Scholar 

  8. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2002, vol. 76, p. 499.

    Google Scholar 

  9. Shevkunov, S.V., Russ. J. Gen. Chem., 2002, vol. 72, p. 685.

    Article  CAS  Google Scholar 

  10. Shevkunov, S.V., Khim. Fiz., 2003, vol. 22, p. 90.

    CAS  Google Scholar 

  11. Shevkunov, S.V., Lukyanov, S.I., Leyssale, J.-M., and Millot, Cl., Chem. Phys., 2005, vol. 310, p. 97.

    Article  CAS  Google Scholar 

  12. Simon, P. and Gogotsi, Y., Nat. Mater., 2008, vol. 7, p. 845.

    Article  CAS  Google Scholar 

  13. Tarascon, J.-M. and Armand, M., Nature (London, U.K.), 2001, vol. 414, p. 459.

    Article  Google Scholar 

  14. Steele, B.C.H. and Heinzel, A., Nature (London, U.K.), 2001, vol. 414, p. 345.

    Article  CAS  Google Scholar 

  15. Jurewicz, K., Frackowiak, E., and Beguin, F., Appl. Phys. A., 2004, vol. 78, p. 981.

    Article  CAS  Google Scholar 

  16. Tashkhourian, J., Ghaderizadeh, S.M., and Montazerozohori, M., Russ. J. Electrochem., 2015, vol. 51, p. 209.

    Article  CAS  Google Scholar 

  17. Koga, K., Gao, G.T., Tanaka, H., and Zeng, X.C., Nature (London, U.K.), 2001, vol. 412, p. 802.

    Article  CAS  Google Scholar 

  18. Koga, K., Gao, G.T., Tanaka, H., and Zeng, X.C., Phys. A (Amsterdam, Neth.), 2002, vol. 314, p. 462.

    Article  CAS  Google Scholar 

  19. Maniwa, Y., Kataura, H., Abe, M., Suzuki, S., Achiba, Y., Kira, H., and Matsuda, K., J. Phys. Soc. Jpn., 2002, vol. 71, p. 2863.

    Article  CAS  Google Scholar 

  20. Oh, J., Shim, W., Lee, J., Kim, J., Moon, H., and Seo, G., J. Chem. Eng. Data, 2003, vol. 48, p. 1458.

    Article  CAS  Google Scholar 

  21. Kocherbitov, V. and Alfredsson, V., J. Phys. Chem. C, 2007, vol. 111, p. 12906.

    Article  CAS  Google Scholar 

  22. Jahnert, S., Vaca, ChavezF., Schaumann, G.E., Schreiber, A., Schonhoff, M., and Findenegg, G.H., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 6039.

    Article  CAS  Google Scholar 

  23. Takahara, S., Nakano, M., Kittaka, S., Kuroda, Y., Mori, T., Hamano, H., and Yamaguchi, T., J. Phys. Chem. B, 1999, vol. 103, p. 5814.

    Article  CAS  Google Scholar 

  24. Smirnov, P., Yamaguchi, T., Kittaka, S., Takahara, S., and Kuroda, Y., J. Phys. Chem. B, 2000, vol. 104, p. 5498.

    Article  CAS  Google Scholar 

  25. Jua, Sh.-P., Chang, J.-G., Linc, J.-S., and Lin, Y.-Sh., J. Chem. Phys., 2005, vol. 122, p. 154707.

    Article  Google Scholar 

  26. Alishahi, M., Kamali, R., and Abouali, O., Russ. J. Electrochem., 2015, vol. 51, p. 49.

    Article  CAS  Google Scholar 

  27. Zhu, Y. and Granick, S., Phys. Rev. Lett., 2001, vol. 87, p. 096104.

    Article  CAS  Google Scholar 

  28. Raviv, U., Giasson, S., Frey, J., and Klein, J., J. Phys.: Condens. Matter, 2002, vol. 14, p. 9275.

    CAS  Google Scholar 

  29. Opitz, A. and Ahmed, S.I.-U., Schaefer, J.A., and Scherge, M., Surf. Sci., 2002, vol. 504, p. 199.

    Article  CAS  Google Scholar 

  30. Tombari, E., Salvetti, G., Ferrari, C., and Johari, G.P., J. Chem. Phys., 2005, vol. 123, p. 214706.

    Article  CAS  Google Scholar 

  31. Puibasset, J. and Pellenq, R.-J.-M., J. Chem. Phys., 2005, vol. 122, p. 094704.

    Article  Google Scholar 

  32. Gordillo, M.C. and Martí, J., Chem. Phys. Lett., 2000, vol. 329, p. 341.

    Article  CAS  Google Scholar 

  33. Gordillo, M.C. and Martí, J., Chem. Phys. Lett., 2001, vol. 341, p. 250.

    Article  CAS  Google Scholar 

  34. Martí, J. and Gordillo, M.C., Phys. Rev. E, 2001, vol. 64, p. 021504.

    Article  Google Scholar 

  35. Dzubiella, J. and Hansen, J.-P., J. Chem. Phys., 2005, vol. 122, p. 234706.

    Article  CAS  Google Scholar 

  36. Maranon, J., Leo, Di., and Maranon, J., J. Mol. Struct.: THEOCHEM, 2005, vol. 729, p. 53.

    Article  Google Scholar 

  37. Kiyohara, K., Sugino, T., and Asaka, K., J. Chem. Phys., 2010, vol. 132, p. 144705.

    Article  Google Scholar 

  38. Nicholson, D. and Quirke, N., Mol. Simul., 2003, vol. 29, p. 287.

    Article  CAS  Google Scholar 

  39. Dzubiella, J., Allen, R.J., and Hansen, J.-P., J. Chem. Phys., 2004, vol. 120, p. 5001.

    Article  CAS  Google Scholar 

  40. Dzubiella, J. and Hansen, J.-P., J. Chem. Phys., 2005, vol. 122, p. 234706.

    Article  CAS  Google Scholar 

  41. Peter, C. and Hummer, G., Biophys. J., 2005, vol. 89, p. 2222.

    Article  CAS  Google Scholar 

  42. Beu, T.A., J. Chem. Phys., 2010, vol. 132, p. 164513.

    Article  Google Scholar 

  43. Beu, T.A., J. Chem. Phys., 2011, vol. 135, p. 044515.

    Article  Google Scholar 

  44. Beu, T.A., J. Chem. Phys., 2011, vol. 135, p. 044516.

    Article  Google Scholar 

  45. Li, D. and Wang, H.T., J. Mater. Chem., 2010, vol. 20, p. 4551.

    Article  CAS  Google Scholar 

  46. Sridhara, V., Gowrishankar, B.S., Snehalatha, C., and Satapathy, L.N., Trans. Indian Ceram. Soc., 2009, vol. 68, p. 1.

    Article  CAS  Google Scholar 

  47. Kalcher, I., Schulz, J.C.F., and Dzubiella, J., J. Chem. Phys., 2010, vol. 133, p. 164511.

    Article  Google Scholar 

  48. Malani, A., Murad, S., and Ayappa, K.G., Mol. Simul., 2010, vol. 36, p. 579.

    Article  CAS  Google Scholar 

  49. Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1118.

    Article  CAS  Google Scholar 

  50. Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1127.

    Article  CAS  Google Scholar 

  51. Shevkunov, S.V., Colloid J., 2014, vol. 76, no. 4, p. 490.

    Article  CAS  Google Scholar 

  52. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2014, vol. 88, p. 1744.

    Article  CAS  Google Scholar 

  53. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2014, vol. 88, p. 2165.

    Article  CAS  Google Scholar 

  54. Zamalin, V.M., Norman, G.E., and Filinov, V.S., Metod Monte-Karlo v statisticheskoi termodinamike (Method of Monte Carlo in Statistical Thermodynamics), Moscow: Nauka, 1977.

    Google Scholar 

  55. Shevkunov, S.V., Colloid J., 2004, vol. 66, p. 216.

    Article  CAS  Google Scholar 

  56. Shevkunov, S.V., Colloid J., 2010, vol. 72, p. 93.

    Article  CAS  Google Scholar 

  57. Shevkunov, S.V., Russ. J. Electrochem., 2013, vol. 49, p. 228.

    Article  CAS  Google Scholar 

  58. Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 753.

    Article  CAS  Google Scholar 

  59. Hiroaka, K., Mizuse, S., and Yamade, S., J. Phys. Chem., 1988, vol. 92, p. 3943.

    Article  Google Scholar 

  60. Olleta, A.C., Lee, H.M., and Kim, K.S., J. Chem. Phys., 2006, vol. 124, p. 024321.

    Article  Google Scholar 

  61. Shevkunov, S.V., Colloid J., 2010, vol. 72, p. 107.

    Article  CAS  Google Scholar 

  62. Shevkunov, S.V., Colloid J., 2011, vol. 73, p. 135.

    Article  CAS  Google Scholar 

  63. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2011, vol. 85, p. 1584.

    Article  CAS  Google Scholar 

  64. Shevkunov, S.V., Russ. J. Electrochem., 2013, vol. 49, p. 238.

    Article  CAS  Google Scholar 

  65. Shevkunov, S.V., Colloid J., 2002, vol. 64, p. 236.

    Article  CAS  Google Scholar 

  66. Shevkunov, S.V., JETP Lett., 2002, vol. 76, p. 700.

    Article  CAS  Google Scholar 

  67. Shevkunov, S.V., Colloid J., 2004, vol. 66, p. 216.

    Article  CAS  Google Scholar 

  68. Shevkunov, S.V., Colloid J., 2004, vol. 66, p. 495.

    Article  CAS  Google Scholar 

  69. Shevkunov, S.V., Colloid J., 2004, vol. 66, p. 506.

    Article  CAS  Google Scholar 

  70. Shevkunov, S.V., Colloid J., 2009, vol. 71, p. 406.

    Article  CAS  Google Scholar 

  71. Shevkunov, S.V., Colloid J., 2008, vol. 70, p. 784.

    Article  CAS  Google Scholar 

  72. Burnham, C.J., Petersen, M.K., Day, T.J.F., Iyengar, S.S., and Voth, G.A., J. Chem. Phys., 2006, vol. 124, p. 024327.

    Article  Google Scholar 

  73. Herce, D.H., Perera, L., Darden, T.A., and Sagui, C., J. Chem. Phys., 2005, vol. 122, p. 024513.

    Article  Google Scholar 

  74. Yoo, S., Lei, Y.A., and Zeng, X.C., J. Chem. Phys., 2003, vol. 119, p. 6083.

    Article  CAS  Google Scholar 

  75. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2009, vol. 83, p. 972.

    Article  CAS  Google Scholar 

  76. Shevkunov, S.V., Colloid J., 2011, vol. 73, p. 275.

    Article  CAS  Google Scholar 

  77. Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., Ed., 2nd Edition, Leningrad: Khimiya, vol.78.

  78. Hill, T.L., Statistical Mechanics: Principles and Selected Applications, New York: McGraw-Hill, 1956 (translated into Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 5, pp. 451–462.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. Structure and electric properties of the hydration shell of a singly charged chloride ion in a nanopore with hydrophilic walls. Russ J Electrochem 52, 397–407 (2016). https://doi.org/10.1134/S1023193516050116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516050116

Keywords

Navigation