Skip to main content
Log in

Electrochemical heat flow calorimeter

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A device designed for research of heat phenomena occurring in chemical power sources (CPS) is described. The device includes two functional blocks: electrochemical and calorimetrical, operating under single control, which allows simultaneously performing electrochemical and calorimetric measurements. The calorimetric block is a heat flow calorimeter. The calorimetric chamber design provides the possibility of studying thermal processes in laboratory electrochemical cells and CPS of planar, disk, and prismatic design. The absolute measurement error of the heat flow is ±50 μW at the resolution of 1 μW. The operating temperature range of the calorimetric chamber is 0–90°C. The basis of the electrochemical block is a module of a four–range potentiostat–galvanostat. The maximum polarizing current of the potentiostat is ±200 mA at the maximum voltage on the auxiliary electrode of ±10 V. Multiuser remote access from the user computers over Ethernet to the device is provided for control and treatment of experimental data. Digital deconvolution filters allowing to compensate the response rate of the heat flow meter are used for processing primary data of calorimetric measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jhu, C.-Y., Wang, Y.-W., Shu, C.-M., Chang, J.-C., and Wu, H.-C., J. Hazard Mater., 2011, vol. 192, p. 99.

    CAS  Google Scholar 

  2. Jhu, C.-Y., Wang, Y.-W., Wen, C.-Y., and Shu, C.-M., Appl. Energy, 2012, vol. 100, p. 127.

    Article  CAS  Google Scholar 

  3. Lu, T.-Y., Chiang, C.-C., Wu, S.-H., Chen, K.-C., Lin, S.-J., Wen, C.-Y., and Shu, C.-M., J. Therm. Anal. Calorim., 2013, vol. 114, p. 1083.

    Article  CAS  Google Scholar 

  4. Ralbovsky, P., Meeting Abstracts, 2012, vol. MA2012-02, p. 1007.

    Google Scholar 

  5. Ralbovsky, P., Chippett, S., Singh, S.K., and Kotherithara, R., Proc. NATAS Annu. Conf. Therm. Anal. Appl., 2003, vol. 31, p. 105.

    Google Scholar 

  6. Ralbovsky, P.J., Chippett, S., Sriramulu, S., Lupien, B., and Singh, S., Meeting Abstracts, 2008, vol. MA2008-02, p. 1196.

    Google Scholar 

  7. Wang, H., Li, J.-J., Wang, L., Yang, J.-P., Li, M.-G., He, X.-M., and Ouyang, M.-G., Xin Cailiao Chanye, 2013, p. 53.

    Google Scholar 

  8. Wu, Y.F., Brun-Buisson, D., Genies, S., Mattera, F., and Merten, J., ECS Trans., 2009, vol. 16, p. 93.

    Article  CAS  Google Scholar 

  9. Ralbovsky, P.J., Campbell, R., and Beta, I., Meeting Abstracts, 2010, vol. MA2010-02, p. 1106.

    Google Scholar 

  10. Xiao, M. and Choe, S.-Y., J. Power Sources, 2013, vol. 241, p. 46.

    Article  CAS  Google Scholar 

  11. Pesaran, A.A., Russell, D.J., Crawford, J.W., Rehn, R., and Lewis, E.A., Annu. Battery Conf. Appl. Adv., 13th, 1998, p. 127.

    Google Scholar 

  12. Pesaran, A.A., Russell, D.J., Crawford, J.W., Rehn, R., and Lewis, E.A., Annu. Battery Conf. Appl. Adv., 13th, 1998, p. 13.

    Google Scholar 

  13. Mochalov, S.E., Antipin, A.V., and Kolosnitsyn, V.S., Nauchn. Priborostr., 2009, vol. 19, p. 88.

    Google Scholar 

  14. Kolosnitsyn, V.S., Kuzmina, E.V., Karaseva, E.V., and Mochalov, S.E., J. Power Sources, 2011, vol. 196, p. 1478.

    Article  CAS  Google Scholar 

  15. Seo, J., Kim, C.-S., Zaghib, K., and Prakash, J., Electrochem. Commun., 2014, vol. 44, p. 42.

    Article  CAS  Google Scholar 

  16. Kolosnitsyn, V.S., Kuzmina, E.V., Karaseva, E.V., and Mochalov, S.E., J. Power Sources, 2011, vol. 196, pp. 1478–1482.

    Article  CAS  Google Scholar 

  17. Kolosnitsyn, V.S., Kuzmina, E.V., and Mochalov, S.E., J. Power Sources, 2014, vol. 252, p. 28.

    Article  CAS  Google Scholar 

  18. Canas, N.A., Hirose, K., Pascucci, B., Wagner, N., Friedrich, K.A., and Hiesgen, R., Electrochim. Acta, 2013, vol. 97, p. 42.

    Article  CAS  Google Scholar 

  19. Kolosnitsyn, V.S., Kuzmina, E.V., and Mochalov, S.E., J. Power Sources, 2014, vol. 252, p. 28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kolosnitsyn.

Additional information

Original Russian Text © S.E. Mochalov, A.R. Nurgaliev, A.V. Antipin, E.V. Kuz’mina, V.S. Kolosnitsyn, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 5, pp. 506–513.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, S.E., Nurgaliev, A.R., Antipin, A.V. et al. Electrochemical heat flow calorimeter. Russ J Electrochem 52, 449–455 (2016). https://doi.org/10.1134/S1023193516050086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516050086

Keywords

Navigation