Skip to main content
Log in

TiO2 nanotube arrays based DSA electrode and application in treating dye wastewater

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Dimensionally stable anode (DSA) of antimony-doped tin dioxide electrode based on TiO2-nanotube arrays (NTs) has been successfully fabricated through thermal decomposition. The surface morphology and composition of the electrodes were characterized by using scanning electron microscopy and X-ray diffraction. Methyl orange (MO) was used as a model pollutant to investigate the electrochemical properties of these two electrodes. The optimized anodic oxidation voltage and time for TiO2-nanotubes array based DSA electrode is 60 V and 10 min, respectively. The results show that Ti/TiO2–NTs/Sb–SnO2 electrode has an increase of 100 mV in oxygen evolution overpotential and the service life is 56% longer than that of the traditional DSA electrode. Under the optimum conditions, MO solution decolorization rate and TOC removal rate reached approximately 100 and 80%, respectively. Study suggested that the as-prepared Ti/TiO2–NTs/Sb–SnO2 DSA electrode exhibits high activity for degradation of organic pollutant with high concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basha, C.A., Sendhil, J., and Selvakumar, K.V., Desalination, 2012, vol. 285, p. 188.

    Article  CAS  Google Scholar 

  2. Carlos, B.D., Lina, A.B.M., and Reyna, N., Ind. Eng. Chem. Res., 2012, vol. 51, p. 9335.

    Article  Google Scholar 

  3. He, D.L. and Mho, S.I., J. Electroanal. Chem., 2003, vol. 568, p. 19.

    Article  Google Scholar 

  4. Orudzhev, F.F., Gasanova, F.G., and Aliev, Z.M., Nanotechnol. Russia, 2012, vol. 7, p. 482.

    Article  Google Scholar 

  5. Giannuzzi, R., Manca, M., and De Marco, L., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 1933.

    Article  CAS  Google Scholar 

  6. Jain, R.M., Mody, K.H., and Keshri, J., Mar. Pollut. Bull., 2014, vol. 84, p. 83.

    Article  CAS  Google Scholar 

  7. Kertèsz, S., Cakl, J., and Jiránková, H., Desalination, 2014, vol. 343, p. 106.

    Article  Google Scholar 

  8. Karthik, S., James, I.B., and Nageh, K.A., J. Phys. Chem., 2009, vol. 113, p. 6327.

    Google Scholar 

  9. Lee, K.H. and Song, S.W., ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 3697.

    Article  CAS  Google Scholar 

  10. Lin, H., Niu, J., and Xu, J., Environ. Sci. Technol., 2013, vol. 47, p. 13039.

    Article  CAS  Google Scholar 

  11. Robert, M.A., Tian, M., and Chen, A.C., Environ. Sci. Technol., 2009, vol. 43, p. 5100.

    Article  Google Scholar 

  12. Rita, F.Y. and Zheng, Y.M., Nadeeshani Nanayakkara, K.G., Ind. Eng. Chem., 2009, vol. 48, p. 7466.

    Article  Google Scholar 

  13. Shao, D., Yan, W., and Cao, L., J. Hazard. Mater., 2014, vol. 267, p. 238.

    Article  CAS  Google Scholar 

  14. Shao, D., Yan, W., and Li, X., Ind. Eng. Chem., 2014, vol. 53, p. 3898.

    Article  CAS  Google Scholar 

  15. Xing, J., Li, H., and Xia, Z., Ind. Eng. Chem. Res., 2014, vol. 53, p. 10667.

    Article  CAS  Google Scholar 

  16. Mao, X.H., Tian, F., Gan, F.X., Lin, A., and Zhang, X., Russ. J. Electrochem., 2008, vol. 44, p. 802.

    Article  CAS  Google Scholar 

  17. Cui, X., Zhao, G.H., and Lei, Y.Z., Mater. Chem. Phys., 2009, vol. 113, p. 314.

    Article  CAS  Google Scholar 

  18. Yang, S.Y., Kim, D., and Park, H., Environ. Sci. Technol., 2014, vol. 48, p. 2877.

    Article  CAS  Google Scholar 

  19. Yue, L., Guo, J., and Yang, J., J. Ind. Eng. Chem., 2014, vol. 20, p. 752.

    Article  CAS  Google Scholar 

  20. Zhang, H., Liu, P., and Liu, X., Langmuir, 2010, vol. 26, p. 11226.

    Article  CAS  Google Scholar 

  21. Zheng, Y.M., Yunus, R.F., and Nanayakkara, K.G.N., Ind. Eng. Chem. Res., 2012, vol. 51, p. 5953.

    Article  CAS  Google Scholar 

  22. Zhuo, Q., Deng, S., and Yang, B., Environ. Sci. Technol., 2011, vol. 45, p. 2973.

    Article  CAS  Google Scholar 

  23. Liu, P.S., Cui, G., and Yang, C.Y., Mater. Lett., 2015, vol. 155, p. 87.

    Article  CAS  Google Scholar 

  24. Wang, Y., Gao, Y.W., and Chen, L., Catal. Today, 2015, vol. 252, p. 107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Zhou.

Additional information

Published in Russian in Elektrokhimiya, 2016, Vol. 52, No. 5, pp. 475–482.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Hu, B., Wang, Y. et al. TiO2 nanotube arrays based DSA electrode and application in treating dye wastewater. Russ J Electrochem 52, 420–426 (2016). https://doi.org/10.1134/S1023193516050062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516050062

Keywords

Navigation