Skip to main content
Log in

Effect of oxidative treatment on the electrochemical properties of aligned multi-walled carbon nanotubes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Vertically aligned multi-walled carbon nanotubes (MWNTs) were grown on the surface of electroconductive silicon substrate by catalytic chemical vapor deposition (CCVD) of a mixture of toluene and ferrocene vapors at 800°С. The anisotropic structure of the array that is due to the mutual orientation of MWNTs makes such materials attractive for use as supercapacitor electrodes. The effect of iron nanoparticles encapsulated in MWNTs as a result of synthesis on the electrochemical capacity of the sample in a 1 М H2SO4 solution was studied. Iron was removed during the thermal treatment of the MWNT array in a 20% H2SO4 solution under the normal or hydrothermal conditions. The contribution of redox processes involving iron was shown to be comparable to the contribution of the double-layer capacity of MWNTs. The hydrothermal treatment allows easy separation of the array from the silicon substrate without any loss of electric coupling of MWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neupane, S., Lastres, M., Chiarella, M., Li, W., Su, Q., and Du, G., Carbon, 2012, vol. 50, p. 2641.

    Article  CAS  Google Scholar 

  2. Scarselli, M., Castrucci, P., and De Crescenzi, M., J. Phys.: Condens. Matter, 2012, vol. 24, no. 31, p. 313202.

    CAS  Google Scholar 

  3. Penza, M., Rossi, R., Alvisi, M., and Serra, E., Nanotechnology, 2010, vol. 21, no. 10, p. 105501.

    Article  CAS  Google Scholar 

  4. Wang, G., Zhang, L., and Zhang, J., Chem. Soc. Rev., 2012, vol. 41, p. 797.

    Article  CAS  Google Scholar 

  5. Bulusheva, L.G., Fedorovskaya, E.O., Kurenya, A.G., and Okotrub, A.V., Phys. Status Solidi B, 2013, vol. 250, no. 12, p. 2586.

    Article  CAS  Google Scholar 

  6. Zheng, C., Qian, W., Cui, C., Xu, G., Zhao, M., Tian, G., and Wei, F., J. Nat. Gas Chem., 2012, vol. 21, no. 3, p. 233.

    Article  CAS  Google Scholar 

  7. Kotz, R. and Carlen, M., Electrochim. Acta, 2000, vol. 45, p. 2483.

    Article  CAS  Google Scholar 

  8. Fedorovskaya, E.O., Okotrub, A.V., and Bulusheva, L.G., Fullerenes, Nanotubes, Carbon Nanostruct., 2012, vol. 20, p. 519.

    Article  CAS  Google Scholar 

  9. Bulusheva, L.G., Fedorovskaya, E.O., Okotrub, A.V., Maximovskiy, E.A., Vyalikh, D.V., Chen, X., and Song, H., Phys. Status Solidi B, 2011, vol. 248, p. 2484.

    Article  CAS  Google Scholar 

  10. Schnoor, T.I.W., Smith, G., Eder, D., Koziol, K.K.K., Tim Burstein, G., Windle, A.H., and Schulte, K., Carbon, 2013, vol. 60, p. 229.

    Article  CAS  Google Scholar 

  11. Zhang, H., Cao, G., Wang, Z., Yang, Y., Shi, Z., and Gu, Z., Nano. Lett., 2008, vol. 8, p. 2664.

    Article  CAS  Google Scholar 

  12. Bose, S., Kuila, T., Mishra, A.K., Rajasekar, R., Kim, N.H., and Lee, J.H., J. Mater. Chem., 2012, vol. 22, p. 767.

    Article  CAS  Google Scholar 

  13. Kim, B., Chung, H., Chu, K.S., Yoon, H.G., Lee, C.J., and Kim, W., Synth. Met., 2010, vol. 160, p. 584.

    Article  CAS  Google Scholar 

  14. Wei, S., Kang, W., Davidson, J., and Huang, J., Diamond Relat. Mater., 2008, vol. 17, p. 906.

    Article  CAS  Google Scholar 

  15. Signorelli, R., Ku, D.C., Kassakian, J.G., and Schindall, J.E., Proc. IEEE, 2009, vol. 97, p. 1837.

    Article  CAS  Google Scholar 

  16. Khavrus, V.O., Weiser, M., Fritsch, M., Ummethala, R., Salvaggio, M.G., Schneider, M., Kusnezoff, M., and Leonhardt, A., Chem. Vap. Deposition, 2012, vol. 18, p. 53.

    Article  CAS  Google Scholar 

  17. Shi, R., Jiang, L., and Pan, C., Soft Nanosci. Lett., 2011, vol. 1, p. 11.

    Article  CAS  Google Scholar 

  18. Pan, H., Li, J., and Feng, Y., Nanoscale Res. Lett., 2010, vol. 5, p. 654.

    Article  CAS  Google Scholar 

  19. Lyon, J.L. and Stevenson, K.J., Langmuir, 2007, vol. 23, p. 11311.

    Article  CAS  Google Scholar 

  20. Fedorovskaya, E.O., Bulusheva, L.G., Kurenya, A.G., Asanov, I.P., Rudina, N.A., Funtov, K.O., Lyubutin, I.S., and Okotrub, A.V., Electrochim. Acta, 2014, vol. 139, p. 165.

    Article  CAS  Google Scholar 

  21. Wang, Y.-G., Li, H.-Q., and Xia, Y.-Y., Adv. Mater., 2006, vol. 18, p. 2619.

    Article  CAS  Google Scholar 

  22. Bulusheva, L.G., Okotrub, A.V., Kinloch, I.A., Asanov, I.P., Kurenya, A.G., Kudashov, A.G., Chen, X., and Song, H., Phys. Status Solidi B, 2008, vol. 245, p. 1971.

    Article  CAS  Google Scholar 

  23. Tur, V.A., Okotrub, A.V., Shmakov, M.M., Fedorovskaya, E.O., Asanov, I.P., and Bulusheva, L.G., Phys. Status Solidi B, 2013, vol. 250, p. 2747.

    Article  CAS  Google Scholar 

  24. Shlyakhova, E.V., Bulusheva, L.G., Kanygin, M.A., Plyusnin, P.E., Kovalenko, K.A., Senkovskiy, B.V., and Okotrub, A.V., Phys. Status Solidi B, 2014, vol. 251, p. 2607.

    Article  CAS  Google Scholar 

  25. Pan, H., Poh, C.K., Feng, Y.P., and Lin, J., Chem. Mater., 2007, vol. 19, p. 6120.

    Article  CAS  Google Scholar 

  26. Inagaki, M., Konno, H., and Tanaike, O., J. Power Sources, 2010, vol. 195, p. 7880.

    Article  CAS  Google Scholar 

  27. Li, J., Cheng, X., Shaahurin, A., and Keidar, M., Graphene, 2012, vol. 1, p. 1.

    Article  Google Scholar 

  28. Gu, W. and Yushin, G., WIREs Energy Environ., 2014, vol. 3, p. 424.

    Article  CAS  Google Scholar 

  29. Kim, Y.T. and Mitani, T., J. Power Sources, 2006, vol. 158, p. 1517.

    Article  CAS  Google Scholar 

  30. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, and Supercapacitors, Wiley, 2015, p. 263.

    Google Scholar 

  31. Shah, R., Zhang, X., and Talapatra, S., Nanotechnology, 2009, vol. 20, p. 39202.

    Article  Google Scholar 

  32. Atthipalli, G., Tang, Y., Star, A., and Gray, J.L., Thin Solid Films, 2011, vol. 520, p. 1651.

    Article  CAS  Google Scholar 

  33. Okotrub, A.V., Bulusheva, L.G., Kudashov, A.G., Belavin, V.V., and Komogortsev, S.V., Ross. Nanotekhnol., vol. 3, nos. 3–4, p. 28.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Fedorovskaya.

Additional information

Original Russian Text © E.O. Fedorovskaya, L.G. Bulusheva, A.G. Kurenya, I.P. Asanov, A.V. Okotrub, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 5, pp. 497–505.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorovskaya, E.O., Bulusheva, L.G., Kurenya, A.G. et al. Effect of oxidative treatment on the electrochemical properties of aligned multi-walled carbon nanotubes. Russ J Electrochem 52, 441–448 (2016). https://doi.org/10.1134/S1023193516050049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516050049

Keywords

Navigation