Skip to main content
Log in

Electric conductivity of heterovalent substitution solid solutions of the (1–x)PbF2xYF3–SnF2 system

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Heterovalent substitution solid solutions of tetragonal modification isostructural with β-PbSnF4 and having fluoride anions localized in three structurally nonequivalent positions are formed in the (1–x)PbF2xYF3–SnF2 system in the concentration range 0 < x ≤ 0.17. The conductivity of the synthesized samples is provided by the interstitial fluoride anions and is independent of the concentration of the heterovalent substituent at temperatures below 300 K. The contribution of the surface conductivity of the crystallites of the synthesized samples to the total bulk conductivity was not found. The temperature dependences of electric conductivity of each of the synthesized samples show an inflection at 435–475 K, which is due to the increased mobility of fluoride anions at elevated temperatures. The transport numbers of the fluoride anions are close to unity over the whole range of concentrations of the synthesized samples and are almost independent of the YF3 concentration. The electronic conductivity of the samples was two orders of magnitude lower than the ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), St. Petersburg: Sankt-Peterb. Gos. Univ., 2010, vol. 2.

  2. Gurevich, Yu.Ya., Tverdye elektrolity (Solid Electrolytes), Moscow Nauka, 1986.

    Google Scholar 

  3. Sorokin, N.I. and Sobolev, B.P., Kristallografiya, 2007, vol. 52, no. 5, p. 870.

    Google Scholar 

  4. Patro, L.N. and Hariharan, K., Solid State Ionics, 2013, vol. 239, p. 41.

    Article  CAS  Google Scholar 

  5. Trnovcova, V., Fedorov, P.P., and Furar, I., Russ. J. Electrochem., 2009, vol. 45, p. 630.

    Article  CAS  Google Scholar 

  6. Donaldson, J.D. and Senior, B.J., J. Chem. Soc. A, 1967, p. 1821.

    Google Scholar 

  7. Ahmad, M.M. and Yamada, K., Appl. Phys. Lett., 2007, vol. 91, p. 1.

    Article  Google Scholar 

  8. Denes, G., Milova, G., Madamba, M.C., and Perfiliev, M., Solid State Ionics, 1996, vols. 86–88, p. 77.

    Google Scholar 

  9. Castiglione, M., Madden, P.A., Berastegui, P., and Hull, S., J. Phys.: Condens. Matter, 2005, vol. 17, p. 845.

    CAS  Google Scholar 

  10. Ito, Y., Mukoyama, T., and Yoshikado, S., Solid State Ionics, 1995, vol. 80, p. 317.

    Article  CAS  Google Scholar 

  11. Perez, G., Vilminot, S., Granier, W., Cot, L., Lucat, C., Reau, J.M., and Portier, J., Mater. Res. Bull., 1980, vol. 15, p. 587.

    Article  CAS  Google Scholar 

  12. Uno, M., Onitsuka, M., Ito, Y., and Yoshikado, S., Solid State Ionics, 2005, vol. 176, p. 2493.

    Article  CAS  Google Scholar 

  13. Kanno, R., Nakamura, S., and Kawamoto, Y., Solid State Ionics, 1992, vol. 51, p. 53.

    Article  CAS  Google Scholar 

  14. Kavun, V.Ya., Ryabov, A.I., Telin, I.A., Podgorbunskii, A.B., Sinebryukhov, S.L., Gnedenkov, S.V., and Goncharuk, V.K., Zh. Strukt. Khim., 2012, vol. 53, no. 2, p. 292.

    Google Scholar 

  15. Ito, Y., Koto, K., Yoshikado, S., and Ohachi, T., Solid State Ionics, 1986, vols. 18–19, p. 1202.

    Google Scholar 

  16. Nikiforov, A.E., Zakharov, A.Yu., Chernyshev, V.A., Ugryumov, M.Yu., and Kotomanov, S.V., Fiz. Tverd. Tela, 2002, vol. 44, p. 1446.

    Google Scholar 

  17. Ryss, I.G., Khimiya ftora i ego neorganicheskikh soedinenii (Chemistry of Fluorine and Its Inorganic Compounds), Moscow Goskhimizdat, 1956.

    Google Scholar 

  18. Patwe, S.J., Balaya, P., Goyal, P.S., and Tyagi, A.K., Mater. Res. Bull., 2001, vol. 36, p. 1743.

    Article  CAS  Google Scholar 

  19. http://wwwccp14acuk

  20. Wagner, C., Z. Elektrochem., 1956, vol. 60, p. 4.

    CAS  Google Scholar 

  21. Urusov, V.S., Teoreticheskaya kristallokhimiya: Ucheb. posobie (Theoretical Crystal Chemistry. Manual), Moscow Mosk. Gos. Univ., 1987.

    Google Scholar 

  22. Irvine, J.T.S., Sinclair, D.C., and West, A.R., Adv. Mater., 1990, no. 3, p. 132.

    Article  Google Scholar 

  23. Jonscher, A.K., Nature, 1977, vol. 267, p. 673.

    Article  CAS  Google Scholar 

  24. Funke, K., Prog. Solid State Chem., 1993, vol. 22, p. 111.

    Article  CAS  Google Scholar 

  25. Ahmad, M.M., Yamane, Y., and Yamada, K., Mater. Sci. Eng., B, 2013, vol. 178, p. 965.

    Article  CAS  Google Scholar 

  26. Almond, D.P. and Weswt, A.R., Solid State Ionics, 1983, vols. 9–10, p. 277.

    Google Scholar 

  27. Yoshikado, Sh., Ito, Y., and Renau, J.M., Solid State Ionics, 2002, vols. 154–155, p. 503.

    Google Scholar 

  28. Ghosh, A. and Sural, M., Europhys. Lett., 1999, vol. 47, p. 688.

    Article  CAS  Google Scholar 

  29. Ghosh, A. and Pan, A., Phys. Rev. Lett., 2000, vol. 84, p. 2188.

    Article  CAS  Google Scholar 

  30. Ito, Y., Mukoyama, T., Funatomi, H., and Yoshikado, S., Solid State Ionics, 1994, vol. 67, p. 301.

    Article  CAS  Google Scholar 

  31. Wagner, J.B. and Wagner, C., J. Chem. Phys., 1957, vol. 26, p. 1597.

    Article  CAS  Google Scholar 

  32. Patterson, J.W., Bogren, E.C., and Rapp, R.A., J. Electrochem. Soc., 1967, vol. 114, p. 752.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Pogorenko.

Additional information

Original Russian Text © Yu.V. Pogorenko, R.N. Pshenichnyi, A.A. Omel’chuk, V.V. Trachevskii, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 4, pp. 427–437.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogorenko, Y.V., Pshenichnyi, R.N., Omel’chuk, A.A. et al. Electric conductivity of heterovalent substitution solid solutions of the (1–x)PbF2xYF3–SnF2 system. Russ J Electrochem 52, 374–384 (2016). https://doi.org/10.1134/S102319351604011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351604011X

Keywords

Navigation