Skip to main content
Log in

Gas transfer and water vapor condensation in cathode layers of air–hydrogen fuel cells

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Model of heat and mass transfer in catalytic cathode layers of air–hydrogen fuel cells is developed on the basis of experimental data on the layers’ structure. The effect of carbon nanotubes is analyzed: their introducing into the catalytic layer increased the layer’s porosity. The derived analytical expressions allow estimating the carbon-nanotubes-content-dependence of the catalytic layer structure parameters, in particular, the gas channel characteristic dimensions and oxygen and water molecule diffusion coefficients. The simulation results showed that the adding of carbon nanotubes into the catalytic layer allows increasing the fuel cell power significantly, due to removal of limitations caused by water condensation process. The calculated results agree well with the previously obtained experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Revankar Shripad, T. and Majumdar P., Fuel Cells: Principles, Design, and Analysis, CRC Press, 2014, p. 748.

    Google Scholar 

  2. Casalegno, A., Bresciani, F., Groppi, G., and Marchesi, R., J. Power Sources, 2011, vol. 196, pp. 10632–10639.

    Article  CAS  Google Scholar 

  3. Akhtar, N. and Kerkhof, P.J.A.M., Int. J. Hydrogen Energy, 2011, vol. 36, pp. 5536–5549.

    Article  CAS  Google Scholar 

  4. Salih, O. and Erdogan, A., J. Power Sources, 2011, vol. 196, pp. 1920–1931.

    Article  Google Scholar 

  5. Reid, S.K., Water transport in Polymer Electrolyte Fuel Cells: An Exploration of Net Water Drag in Real Time, Master Sci. Dissertation, Knoxville: Univ. Tennessee, 2013, p. 76.

    Google Scholar 

  6. Farzad, A. and Ramin, R., J. Fuel Cell Sci.Technol., 2014, vol. 11, p. 011004-1.

    Google Scholar 

  7. Dever, D.O., Cairncross, R.A., and Elabd, Y.A., J. Fuel Cell Sci. Technol., 2014, vol. 11, pp. 041007–1.

    Article  Google Scholar 

  8. Chan, K. and Eikerling, M., PhysChemPhys., 2014, vol. 16, pp. 2106–2117.

    CAS  Google Scholar 

  9. Ferreira, R.B., Falcao, D.S., Oliveira, V.B., and Pinto, A.M.F.R., J. Power Sources, 2015, vol. 277, pp. 329–342.

    Article  CAS  Google Scholar 

  10. PEM Fuel Cell Electrocatalysts and Catalyst Layers, Fundamentals and Applications, Zhang J., Ed., Vancouver, Canada Springer, 2008.

  11. Taeyoung, K., Seungjae, L., and Heekyung, P., Int. J. Hydrogen Energy, 2010, vol. 35, pp. 8631–8643.

    Article  Google Scholar 

  12. Zabrodskii, A.G., Glebova, N.V., Nechitailov, A.A., Terukova, E.E., Terukov, E.I., Tomasov, A.A., and Zelenina, N.K., Pis’ma Zh. Tekh. Fiz., 2010, vol. 36, pp. 98–105.

    Google Scholar 

  13. Gurevich, S.A, Gorokhov, M.V., Zelenina, N.K., Kozhevin, V.M., Terukova, E.E., and Tomasov, A.A., Pis’ma Zh. Tekh. Fiz., 2009, vol. 35, no. 20, pp. 27–33.

    Google Scholar 

  14. Gorokhov, M.V., Kozhevin, V.M., Yavsin, D.A., Tomasov, A.A., Zelenina, N.K., and Gurevich, S.A., Al’ternativnaya energetika ekologiya, 2008, no. 10, pp. 26–30.

    Google Scholar 

  15. Nechitailov, A.A, Glebova, N.V, Koshkina, D.V., Tomasov, A.A, and Terukova, E.E., Al’ternativnaya energetika ekologiya, 2012, no. 1, pp. 134–138.

    Google Scholar 

  16. Nechitailov, A.A., Glebova, N.V., Koshkina, D.V., Tomasov, A.A., Zelenina, N.K., and Terukova, E.E., Pis’ma Zh. Tekh. Fiz., 2013, vol. 39, no. 17, pp. 17–26.

    Google Scholar 

  17. Karnaukhov, A.P., Tekstura dispersnykh i poristykh materialov (Texture of Disperse and Porous Materials), Novosibirsk Nauka, 1999.

    Google Scholar 

  18. Hayes, W.D. and Probstein, R.F., Hypersonic Flow Theory, New York Academic, 1959.

    Google Scholar 

  19. Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veits, I.V., Medvedev, V.A, Khachkuruzov, G.A., and Yungman, V.S., Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnoe izdanie (Thermodynamic Properties of Infividual Substances. A reference book), Moscow: Nauka, 1979, vol. I.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kozhevin.

Additional information

Original Russian Text © V.M. Kozhevin, A.A. Tomasov, S.A. Gurevich, A.G. Zabrodskii, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 4, pp. 438–444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevin, V.M., Tomasov, A.A., Gurevich, S.A. et al. Gas transfer and water vapor condensation in cathode layers of air–hydrogen fuel cells. Russ J Electrochem 52, 385–391 (2016). https://doi.org/10.1134/S1023193516040066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516040066

Keywords

Navigation