Skip to main content
Log in

Comparative electrochemical study of self-assembly of octanethiol from aqueous and aqueous ethanol solutions on a gold electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The self-assembly of octanethiol (OT) on the surface of a polycrystalline gold electrode in aqueous and aqueous ethanol thiol-containing (1 × 10–4 М) 0.1 М NaClO4 solutions was studied. The blocking properties and electrochemical stability of monolayer OT films were studied by chronopotentiometry during OT adsorption under the open circuit conditions (chronoamperometry at a fixed potential) combined with cyclic voltammetry for modified Au/OT electrodes. It was found from the change in the rate of electrochemical reactions in the range of monolayer stability potentials that in aqueous media, compact insulating OT monolayer films formed at a open circuit potential within ~100 s, and the shift of the adsorption potential toward negative values (to–0.6 V) allowed a considerable decrease in the monolayer self-assembly time. The potential shift toward higher negative values (–0.9 V) leads to a removal of OT from the electrode surface during the reductive desorption, with a multipeak current signal recorded on the voltammograms. A transition from aqueous to aqueous ethanol solutions accelerated the formation of an insulating OT monolayer (≈6 s) and led to a change in the shape of the desorption current peak, whose value was almost independent of the ОТ accumulation time and potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M., Chem. Rev., 2005, vol. 105, p. 1103.

    Article  CAS  Google Scholar 

  2. Iost, R.M. and Crespilho, F.N., Biosens. Bioelectron., 2012, vol. 31, p. 1.

    Article  CAS  Google Scholar 

  3. Gooding, J.J. and Ciampi, S., Chem. Soc. Rev., 2011, vol. 40, p. 2704.

    Article  CAS  Google Scholar 

  4. Chaki, N.R. and Vijayamohanan, K., Biosens. Bioelectron., 2002, vol. 17, p. 1.

    Article  CAS  Google Scholar 

  5. Beulen, M.W.J., Kastenberg, M.I., van Veggel, F., and Reinboudt, D.N., Langmuir, 1998, vol. 14, p. 7463.

    Article  CAS  Google Scholar 

  6. Blake, N.J. and Raj Mutharasan, J. Phys. Chem. C, 2013, vol. 117, no. 3, p. 1335.

    Article  Google Scholar 

  7. Carvalhal, R.F., Freire, R.S., and Kubota, L.T., Electroanalysis, 2005, vol. 17, p. 1251.

    Article  CAS  Google Scholar 

  8. Yang, D.-F., Wilde, C.P., and Morin, M., Langmuir, 1996, vol. 12, p. 6570.

    Article  CAS  Google Scholar 

  9. Stolberg, L., Lipkowski, J., and Irish, D.E., J. Electroanal. Chem., 1990, vol. 296, p. 171.

    Article  CAS  Google Scholar 

  10. Mirsky, V.M., TrAC, Trends Anal. Chem., 2002, vol. 21, p. 439.

    Article  CAS  Google Scholar 

  11. Byloos, M., Al-Maznai, H., and Morin, M., J. Phys. Chem. B, 1999, vol. 103, p. 6554.

    Article  CAS  Google Scholar 

  12. Yang, D.-F., Al-Maznai, H., and Morin, M., J. Phys. Chem., 1997, vol. 101, p. 1158.

    Article  CAS  Google Scholar 

  13. Ovchinnikova, S.N. and Medvedev, A.Zh., Russ. J. Electrochem., 2015, vol. 51, p. 287.

    Article  CAS  Google Scholar 

  14. Dai, J., Li, Zh., Jin, J., Cheng, J., Kong, J., and Bi, Sh., J. Electroanal. Chem., 2008, vol. 648, p. 315.

    Article  Google Scholar 

  15. Schneider, T.W. and Buttry, D.A., J. Am. Chem. Soc., 1993, vol. 115, p. 12391.

    Article  CAS  Google Scholar 

  16. Peterlinz, K.A. and Georgiadis, R., Langmuir, 1996, vol. 12, p. 4731.

    Article  CAS  Google Scholar 

  17. Wong, E.H.J., May, G.L., and Wilde, C.P., Electrochim. Acta, 2013, vol. 109, p. 67.

    Article  CAS  Google Scholar 

  18. Cai, X.-J. and Baldelli, S., J. Phys. Chem. C, 2011, vol. 115, p. 19178.

    Article  CAS  Google Scholar 

  19. Zelinskii, A.G. and Bek, R.Yu., Elektrokhimiya, 1985, vol. 21, p. 66.

    CAS  Google Scholar 

  20. Kletenik, Yu.B. and Aleksandrova, T.P., Zh. Anal. Khim., 1997, vol. 52, p. 752.

    Google Scholar 

  21. Michri, A.A., Pshenichnikov, A.G., and Burshtein, R.Kh., Elektrokhimiya, 1972, vol. 8, p. 364.

    CAS  Google Scholar 

  22. Rogozhnikov, N.A. and Bek, R.Yu., Elektrokhimiya, 1987, vol. 23, p. 1440.

    CAS  Google Scholar 

  23. Raya, D.G., Madueno, R., Blazquez, M., and Pineda, T., Langmuir, 2010, vol. 26, no. 14, p. 11790.

    Article  Google Scholar 

  24. Zhong, C.J. and Porter, M.D., J. Electroanal. Chem., 1997, vol. 425, p. 147.

    Article  CAS  Google Scholar 

  25. Won, S.S. and Porter, M.D., J. Electroanal. Chem., 2000, vol. 485, p. 135.

    Article  Google Scholar 

  26. Byloos, M., Al-Maznai, H., and Morin, M., J. Phys. Chem. B, 2001, vol. 105, p. 5900.

    Article  CAS  Google Scholar 

  27. Walczak, M.M., Aves, C.A., Lamp, B.D., and Porter, M.D., J. Electroanal. Chem., 1995, vol. 396, p. 103.

    Article  Google Scholar 

  28. Muglari, M.I., Erbe, A., Chen, Y., Barth, C., Koelsch, P., and Rohwerder, M., Electrochim. Acta, 2013, vol. 90, p. 17.

    Article  Google Scholar 

  29. Kawaguchi, T., Yasuda, H., and Shimazu, K., Langmuir, 2000, vol. 16, p. 9830.

    Article  CAS  Google Scholar 

  30. Spravochnik khimika (Chemist’s Handbook), Moscow: Goskhimizdat, 1952, vol. 3, p. 222.

  31. Beck, R.Yu., Russ. J. Electrochem., 2002, vol. 38, p. 459.

    Google Scholar 

  32. Brett, C.M.A., Kresak, S., Hianik, T., and Brett, A.M., Electroanalysis, 2003, vol. 15, p. 557.

    Article  CAS  Google Scholar 

  33. Rouhana, L., Moussallem, M.D., and Schlenoff, J.B., J. Am. Chem. Soc., 2011, vol. 133, p. 16080.

    Article  CAS  Google Scholar 

  34. Vetter, K., Elektrochemische Kinetik, Berlin: Springer, 1961.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Ovchinnikova.

Additional information

Original Russian Text © S.N. Ovchinnikova, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 3, pp. 301–309.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikova, S.N. Comparative electrochemical study of self-assembly of octanethiol from aqueous and aqueous ethanol solutions on a gold electrode. Russ J Electrochem 52, 260–267 (2016). https://doi.org/10.1134/S1023193516030083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516030083

Keywords

Navigation