Skip to main content
Log in

Reasons for the effect of the amount of electrolyte on the performance of lithium–sulfur cells

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

As is known, the depth of the electrochemical reduction of sulfur and lithium polysulfides, the reduction rate, and the cycle life of lithium–sulfur cells decrease with the electrolyte content. The present paper studies the reasons for the effect of the amount of electrolyte on the depth of sulfur reduction and the cycle life of lithium–sulfur cells. The main reason for the effect of the amount of electrolyte on the depth of the electrochemical reduction of sulfur was shown to be the generation of solvate complexes of lithium polysulfides. The minimum amount of electrolyte required for complete reduction of sulfur during the discharge of lithium–sulfur cells is determined by the composition of the generated solvate complexes of lithium polysulfides. The solvate numbers of the lithium ion in the solvate complexes of lithium polysulfides generted in sulfolane electrolyte systems were evaluated from the experimental data. An analysis of the results shows that the minimum solvate number of lithium ions in the solvate complexes of lithium polysulfides with sulfolane is 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hofmann, A.F., Fronczek, D.N., and Bessler, W.G., J. Power Sources, 2014, vol. 259, p. 300.

    Article  CAS  Google Scholar 

  2. Mikhaylik, Y.V., Kovalev, I., Schock, R., Kumaresan, K., Xu, J., and Affinito, J., ECS Trans, 2010, vol. 25, p. 23.

    Article  CAS  Google Scholar 

  3. Sion Power Corporation. www.sionpower.com. Cited October 1, 2014.

  4. Scheers, J., Fantini, S., and Johansson, P., J. Power Sources, 2014, vol. 255, p. 204.

    Article  CAS  Google Scholar 

  5. Panasonic Industrial Devices Sales Company of America. http://na.industrial.panasonic.com/products/batteries/rechargeable-batteries/lithium-ion. Cited October 1, 2014.

  6. Boston-Power, Inc. http://www.bostonpower.com/sites/default/files/documents/940-0013-001%20Swing%205300%20DS%20Rev%2001-.pdf. Cited October 1, 2014.

  7. E-One Moli Energy Corp. http://www.molicel. com/hq/download/DM/DM_ICR18650K-80054. pdf. Cited October 1, 2014.

  8. Gaines, L. and Cuenca, R., http://gcep.stanford. edu/pdfs/assessments/ev_battery_assessment.pdf.

  9. Ryu, H.S., Ahn, H.J., Kim, K.W., Ahn, J.H., and Lee, J.Y., J. Power Sources, 2006, vol. 153, p. 360.

    Article  CAS  Google Scholar 

  10. Affinito, J., Mikhaylik, Y., Scordilis-Kelley, C., and Campbell, C., 54th Ann. Tech. Conf. Proc. Soc. Vac. Coaters, 2011, p. 589.

    Google Scholar 

  11. Brückner, J., Thieme, S., Grossmann, H.T., Dorfler, S., Althues, H., and Kaskel, S., J. Power Sources, 2014, vol. 268, p. 82.

    Article  Google Scholar 

  12. Hagen, M., Fanz, P., and Tübke, J., J. Power Sources, 2014, vol. 264, p. 30.

    Article  CAS  Google Scholar 

  13. Zheng, J., Lv, D., Gu, M., Wang, C., Zhang, J.-G., Liu, J., and Xiao, J., J. Electrochem. Soc., 2013, vol. 160, p. A2288.

    Article  CAS  Google Scholar 

  14. Urbonaite, S. and Novak, P., J. Power Sources, 2014, vol. 249, p. 497.

    Article  CAS  Google Scholar 

  15. Brueckner, J., Thieme, S., Boettger-Hiller, F., Bauer, I., Grossmann, H.T., Strubel, P., Althues, H., Spange, S., and Kaskel, S., Adv. Funct. Mater., 2014, vol. 24, p. 1284.

    Article  CAS  Google Scholar 

  16. Mochalov, S.E., Antipin, A.V., and Kolosnitsyn, V.S., Nauchn. Priborostr., 2009, vol. 19, no. 3, p. 88.

    Google Scholar 

  17. Zhang, S.S., J. Power Sources, 2013, vol. 231, p. 153.

    Article  CAS  Google Scholar 

  18. Huang, Y., Sun, J., Wang, W., Wang, Y., Yu, Z., Zhang, H., Wang, A., and Yuan, K., J. Electrochem. Soc., 2008, vol. 155, p. A764.

    Article  CAS  Google Scholar 

  19. Zhang, S.S. and Read, J.A., J. Power Sources, 2012, vol. 200, p. 77.

    Article  CAS  Google Scholar 

  20. Fronczek, D.N. and Bessler, W.G., J. Power Sources, 2013, vol. 244, p. 183.

    Article  CAS  Google Scholar 

  21. Diao, Y., Xie, K., Xiong, S., and Hong, X., J. Electrochem. Soc., 2012, vol. 149, p. A421.

    Article  Google Scholar 

  22. Merritt, M.V. and Sawyer, D.T., Inorg. Chem., 1970, vol. 9, p. 211.

    Article  CAS  Google Scholar 

  23. Badoz-Lambling, J., Bonnaterret, R., Cauquist, G., Delamar, M., and Demance, G., Electrochim. Acta, 1976, vol. 21, p. 119.

    Article  CAS  Google Scholar 

  24. Fujinaga, T., Kuwamoto, T., Okazaki, S., and Hojo, M., Bull. Chem. Soc. Jpn., 1980, vol. 53, p. 2851.

    Article  CAS  Google Scholar 

  25. Paris, J. and Plichon, V., Electrochim. Acta, 1981, vol. 26, p. 1823.

    Article  CAS  Google Scholar 

  26. Yamin, H., Penciner, J., Gorenshtain, A., Elam, M., and Peled, E., J. Power Sources, 1985, vol. 14, p. 129.

    Article  CAS  Google Scholar 

  27. Gaillard, F. and Levillain, E., J. Electroanal. Chem., 1995, vol. 398, p. 77.

    Article  Google Scholar 

  28. Leghié, P., Lelieur, J.P., and Levillain, E., Electrochem. Commun., 2002, vol. 4, p. 406.

    Article  Google Scholar 

  29. Han, D.H., Kim, B.S., Choi, S.J., Jung, Y., and Kwak, J., and Park, S.M., J. Electrochem. Soc., 2004, vol. 151, p. E283.

    Article  CAS  Google Scholar 

  30. Kolosnitsyn, V.S., Kuzmina, E.V., and Karaseva, E.V., ECS Trans., 2009, vol. 19, p. 25.

    Article  CAS  Google Scholar 

  31. Agostini, M., Lee, D.J., Scrosati, B., Sun, Y.K., and Hassoun, J., J. Power Sources, 2014, vol. 265, p. 14.

    Article  CAS  Google Scholar 

  32. Wujcik, K.H., Velasco-Velez, J., Wu, C.H., Pascal, T., Teran, A.A., Marcus, M.A., Cabana, J., Guo, J.C., Prendergast, D., Salmeron, M., and Balsaraa, N.P., J. Electrochem. Soc., 2014, vol. 161, p. A1100.

    Article  CAS  Google Scholar 

  33. Canas, N.A., Wolf, S., Wagner, N., and Friedrich, K.A., J. Power Sources, 2013, vol. 226, p. 313.

    Article  CAS  Google Scholar 

  34. Busche, M.R., Adelhelm, P., Sommer, H., Schneider, H., Leitner, K., and Janek, J., J. Power Sources, 2014, vol. 259, p. 289.

    Article  CAS  Google Scholar 

  35. Kolosnitsyn, V.S., Kuzmina, E.V., and Mochalov, S.E., J. Power Sources, 2014, vol. 252, p. 28.

    Article  CAS  Google Scholar 

  36. Lin, C.N., Chen, W.C., Song, Y.F., Wang, C.C., Tsai, L.D., and Wu, N.L., J. Power Sources, 2014, vol. 263, p. 98.

    Article  CAS  Google Scholar 

  37. Kolosnitsyn, V.S. and Karaseva, E.V., Russ. J. Electrochem., 2008, vol. 44, p. 506.

    Article  CAS  Google Scholar 

  38. Dominko, R., Demir-Cakan, R., Morcrette, M., and Tarascon, J.-M., Electrochem. Commun., 2011, vol. 13, p. 117.

    Article  CAS  Google Scholar 

  39. Patel, M.U.M., Demir-Cakan, R., Morcrette, M., Tarascon, J.-M., Gaberscek, M., and Dominko, R., ChemSusChem, 2013, vol. 6, p. 1177.

    Article  CAS  Google Scholar 

  40. Sharma, R.A., J. Electrochem. Soc., 1972, vol. 119, p. 1439.

    Article  CAS  Google Scholar 

  41. Kolosnitsyn, V.S., Kuzmina, E.V., Karaseva, E.V., and Mochalov, S.E., J. Power Sources, 2011, vol. 196, p. 1478.

    Article  CAS  Google Scholar 

  42. Deng, Z., Zhang, Z., Lai, Y., Liu, J., Li, J., and Liu, Y., J. Electrochem. Soc., 2013, vol. 160, p. A553.

    Article  CAS  Google Scholar 

  43. Canas, N.A., Hirose, K., Pascucci, B., Wagner, N., Friedrich, K.A., and Hiesgen, R., Electrochim. Acta, 2013, vol. 97, p. 42.

    Article  CAS  Google Scholar 

  44. Wang, L., Zhang, T., Yang, S., Cheng, F., Liang, J., and Chen, J., J. Energy Chem., 2013, vol. 22, p. 72.

    Article  Google Scholar 

  45. Walus, S., Barchasz, C., Colin, J.F., Martin, J.F., Elkaim, E., Lepretre, J.C., and Alloin, F., Chem. Commun., 2013, vol. 49, p. 7899.

    Article  CAS  Google Scholar 

  46. Kolosnitsyn, V., Kuzmina, E., and Karaseva, E., Abstracts of Papers, 15th Int. Meeting on Lithium Batteries IMLB-2010, MA2010-03.2010, p. 706. http://ma.ecsdl.org/content/MA2010-03/1/706.full. pdf+html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Karaseva.

Additional information

Original Russian Text © V.S. Kolosnitsyn, E.V. Karaseva, E.V. Kuzmina, A.L. Ivanov, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 3, pp. 315–325.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolosnitsyn, V.S., Karaseva, E.V., Kuzmina, E.V. et al. Reasons for the effect of the amount of electrolyte on the performance of lithium–sulfur cells. Russ J Electrochem 52, 273–282 (2016). https://doi.org/10.1134/S1023193516030071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516030071

Keywords

Navigation