Skip to main content

Variability of discrete Chebyshev spectra of electrochemical noise


A new characteristic of the electrochemical noise spectrum, namely, the variability of an individual line in the discrete Chebyshev spectrum, is discussed. For Chebyshev transforms that have the normal (Gaussian) probability distribution, the proposed variability is 1. In a model experiment, the effect of the lowfrequency harmonic disturbance (drift) and the high-frequency harmonic disturbance (aliasing component) on the variability of an individual line in the Chebyshev noise spectrum is studied. The potentialities of the new approach are demonstrated for a noise electrochemical system involving corrosion processes. The variability of the corrosion process is shown to exceed the variability of the Gaussian noise by a factor of 1.5. The proposed characteristic of electrochemical noise spectrum, namely, the variability of individual line in the discrete Chebyshev spectrum can be a useful informative parameter for the electrochemical noise diagnosis in various electrochemical systems including chemical power sources and fuel cells in which electrochemical corrosion processes can occur.

This is a preview of subscription content, access via your institution.


  1. Frumkin, A.N., Izbrannye trudy. Elektrodnye protsessy (Selected Studies. Electrode Processes), Moscow: Nauka, 1987.

    Google Scholar 

  2. Timashev, S.F., Flikker-shumovaya spektroskopiya. Informatsiya v khaoticheskikh signalakh (Flicker Noise Spectroscopy. Information on Chaotic Signals), Moscow: Fizmatlit, 2007.

    Google Scholar 

  3. Taganova, A.A., Diagnostika germetichnykh khimicheskikh istochnikov toka (Diagnosis of Hermetically Sealed Chemical Power Sources), St. Petersburg: Khimizdat, 2007.

    Google Scholar 

  4. Cottis, R.A., Corrosion, 2001, vol. 57, p. 265.

    Article  CAS  Google Scholar 

  5. Dawson, J.L., in Electrochemical Noise Measurement for Corrosion Applications, Kearns, J.R., Scully, J.R., Roberge, P.R., Reichert, D.L., and Dawson, J.L., Eds., West Conshohocken: ASTM, 1996, p. 3.

  6. Huet, F., in Analytical Methods in Corrosion Science and Engineering, Marcus, P. and Mansfeld, F., Eds., Boca Raton (USA): Taylor and Francis Group, 2006, p. 508.

  7. Astafiev, M.G., Kanevskii, L.S., and Grafov, B.M., Russ. J. Electrochem., 2007, vol. 43, p. 17.

    Article  Google Scholar 

  8. Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Russ. J. Electrochem., 2015, vol. 51, p. 503.

    Article  CAS  Google Scholar 

  9. Bertocci, U., Huet, F., Nogueira, R.P., and Rousseau, P., Corrosion, 2002, vol. 58, p. 337.

    Article  CAS  Google Scholar 

  10. Arley, N. and Buch, K.R., Introduction to the Theory of Probability and Statistics, New York: Wiley, 1950, Chapter 7.

    Google Scholar 

  11. Nikiforov, A.F., Suslov, S.K., and Uvarov, V.B., Classical Orthogonal Polynomials of a Discrete Variable, Berlin: Springer, 1991.

    Book  Google Scholar 

  12. Gogin, N. and Hirvensalo, M., On the generating function of discrete Chebyshev polynomials, Turku Centre for Computer Science, Technical Report, 2007, no. 819, p. 8.

    Google Scholar 

  13. Vasegni, S.V., Advanced Digital Signal Processing and Noise Reduction, Chichester: Wiley, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. L. Klyuev.

Additional information

Original Russian Text © A.L. Klyuev, B.M. Grafov, Yu.A. Dobrovol’skii, A.D. Davydov, A.E. Ukshe, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 12, pp. 1321–1326.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klyuev, A.L., Grafov, B.M., Dobrovol’skii, Y.A. et al. Variability of discrete Chebyshev spectra of electrochemical noise. Russ J Electrochem 51, 1180–1185 (2015).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • electrochemical noise
  • electrochemical noise diagnosis
  • Chebyshev noise spectroscopy
  • corrosion processes