Skip to main content
Log in

Tyrosine sensing on phthalic anhydride functionalized chitosan and carbon nanotube film coated glassy carbon electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Phthaloylchitosan (PHCS) has been synthesized by a simple and low-cost method using chitosan and phthalic anhydride as organic precursors by microwave irradiation. Techniques of nuclear magnetic resonance (NMR), FT-IR spectroscopy and transmission electron microscope (TEM) were used to characterize the structure and properties of the Phthaloylchitosan. Moreover, glassy carbon electrode modified with Phthaloylchitosan and carbon nanotube (PHCS–CNT/GCE) was prepared by casting of the PHCS–CNT solution on GCE. The electrochemical behavior of PHCS–CNT/GCE was investigated and compared with the electrochemical behavior of Phthaloylchitosan modified GC (PHCS/GC), carbon nanotube modified GC (CNT/GC) and unmodified GC using cyclic voltammetry (CV). The Phthaloylchitosan film is electrochemically inactive; similar background charging currents are observed at bare GC. Electrochemical parameters, including apparent diffusion coefficient for the Fe(CN) 3-/4-6 redox probe at PHCS–CNT/GCE is comparable to values reported for GCE, CNT/GCE and PHCS/GCE. The PHCS–CNT/GCE sensor responded linearly to tyrosine (Tyr) in the concentration of 1.0 × 10–6 to 8.0 × 10–4 M with detection limit of 3.0 × 10–7 M at 3σ using amperometry. In addition, the PHCS–CNT/GCE displayed good reproducibility, high sensitivity and good selectivity towards the determination of Tyr, making it suitable for the determination of Tyr in clinical and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fei, S.D., Chen, J.H., Yao, S.Z., Deng, G.H., He, D.L., and Kuang, Y.F., Anal. Biochem., 2005, vol. 339, p. 29.

    Article  CAS  Google Scholar 

  2. Ricci, F. and Palleschi, G., Biosens. Bioelectron., 2005, vol. 21, p. 389.

    Article  CAS  Google Scholar 

  3. Li, C.M., Sun, C.Q., Chen, W., and Pan, L., Surf. Coatings Technol., 2005, vol. 198, p. 474.

    Article  CAS  Google Scholar 

  4. Ionescu, R.E., Abu-Rabeah, K., Cosnier, S., and Marks, R.S., Electrochem. Commun., 2005, vol. 7, p. 1277.

    Article  CAS  Google Scholar 

  5. Robinson, R.S., Sternitzke, K., Mcdermott, M.T., and Mccreery, R.L., J. Electrochem. Soc., 1991, vol. 138, p. 2412.

    Article  CAS  Google Scholar 

  6. Liu, C.Y., Bard, A.J., Wudl, F., Weitz, I., and Heath, J.R., Electrochem. Solid State, 1999, vol. 2, p. 577.

    Article  CAS  Google Scholar 

  7. Banks, C.E. and Compton, R.G., Analyst, 2005, vol. 130, p. 1232.

    Article  CAS  Google Scholar 

  8. Banks, C.E., Moore, R.R., Davies, T.J., and Compton, R.G., Chem. Commun., 2004, vol. 16, p. 1804.

    Article  Google Scholar 

  9. Wang, J., Electroanalysis, 2005, vol. 17, p. 7.

    Article  CAS  Google Scholar 

  10. Jollèsm, P. and Muzzarelli, R.A.A., Chitin and Chitinases, Basel Birkhauser Verlag, 1999.

    Book  Google Scholar 

  11. Bertoldo, M., Nazzi, S., Zampano, G., and Ciardelli, F., Carbohydrate Polymers, 2011, vol. 85, p. 401.

    Article  CAS  Google Scholar 

  12. Zambito, Y. and Di Colo, G., J. Drug Delivery Sci. Technol., 2010, vol. 20, p. 45.

    Article  CAS  Google Scholar 

  13. Di Martino, A., Sittinger, M., and Risbuda, M.V., Biomaterials, 2005, vol. 26, p. 5983.

    Article  Google Scholar 

  14. Harish Prashanth, K.V. and Tharanathan, R.N., Trends Food Sci. Technol., 2007, vol. 18, p. 117.

    Article  Google Scholar 

  15. Yi, H., Wu, L.Q., Bentley, W.E., Ghodssi, R., Rubloff, G.W., and Culver, J.N., Biomacromolecules, 2005, vol. 6, p. 2881.

    Article  CAS  Google Scholar 

  16. Nishimura, S., Kohgo, O., and Kurita, K., Macromolecules, 1991, vol. 24, p. 4745.

    Article  CAS  Google Scholar 

  17. Kurita, K., Kojima, T., Nishiyama, Y., and Shimojoh, M., Macromolecules, 2000, vol. 33, p. 4711.

    Article  CAS  Google Scholar 

  18. Rout, D.K., Pulapura, S.K., and Gross, R.A., Macromolecules, 1993, vol. 26, p. 5999.

    Article  CAS  Google Scholar 

  19. Liu, L., Li, Y., and Fang, Y.E., Carbohydrate Polymers, 2004, vol. 57, p. 97.

    Article  CAS  Google Scholar 

  20. Huang, K.J., Luo, D.F., Xie, W.Z., and Yu, Y.S., Colloids Surf., Ser. B, 2008, vol. 61, p. 176.

    Article  CAS  Google Scholar 

  21. Jin, G.P. and Lin, X.Q., Electrochem. Commun., 2004, vol. 6, p. 454.

    Article  CAS  Google Scholar 

  22. Carlsson, A., Lindqvist, M., and Arch, N.S., Pharmacology, 1978, vol. 303, p. 157.

    CAS  Google Scholar 

  23. Currie, P.J., Chang, N., Luo, S., and Anderson, G.H., Life Sci., 1995, vol. 57, p. 1911.

    Article  CAS  Google Scholar 

  24. Chitravathi, S., Kumara Swamy, B.E., Mamatha, G.P., and Chandrashekar, B.N., J. Mol. Liq., 2012, vol. 172, p. 130.

    Article  CAS  Google Scholar 

  25. Kutla’n, D. and Molna’r-Perl, I., J. Chromatogr., Ser. A, 2003, vol. 987, p. 311.

    Article  Google Scholar 

  26. Zhao, S., Song, Y., and Liu, Y., Talanta, 2005, vol. 67, p. 212.

    Article  CAS  Google Scholar 

  27. Lau, C., Qin, X., Liang, J., and Lu, J., Anal. Chim. Acta, 2004, vol. 514, p. 45.

    Article  CAS  Google Scholar 

  28. Lee, C.J. and Yang, J., Anal. Biochem., 2006, vol. 359, p. 124.

    Article  CAS  Google Scholar 

  29. Wang, H., Wang, W.S., and Zhang, H.S., Talanta, 2001, vol. 53, p. 101519.

    Google Scholar 

  30. Wang, F., Wu, K.Z., Qing, Y., and Ci, Y.X., Anal. Lett., 1992, vol. 25, p. 1469.

    Article  CAS  Google Scholar 

  31. Liu, X., Luo, L., Ding, Y., Kang, Z., and Ye, D., Bioelectrochem., 2012, vol. 86, p. 38.

    Article  CAS  Google Scholar 

  32. Tang, X., Liu, Y., Hou, H., and You, T., Talanta, 2010, vol. 80, p. 2182.

    Article  CAS  Google Scholar 

  33. Xu, Q. and Wang, S.F., Microchim. Acta, 2005, vol. 151, p. 47.

    Article  CAS  Google Scholar 

  34. Yu, X.Z., Mai, Z.B., Xiao, Y., and Zou, X.Y., Electroanalysis, 2008, vol. 20, p. 1246.

    Article  CAS  Google Scholar 

  35. Zhao, G.H., Qi, Y., and Tian, Y., Electroanalysis, 2006, vol. 18, p. 830.

    Article  CAS  Google Scholar 

  36. Jin, G.P., Peng, X., and Chen, Q.Z., Electroanalysis, 2008, vol. 20, p. 907.

    Article  CAS  Google Scholar 

  37. Vasjari, M., Merkoci, A., Hart, J.P., and Alegret, S., Microchim. Acta, 2005, vol. 150, p. 233.

    Article  CAS  Google Scholar 

  38. Okuno, J. and Maehashi, K., Electrochem. Commun., 2007, vol. 9, p. 13.

    Article  CAS  Google Scholar 

  39. Xu, J.M., Wang, Y.P., Xian, Y.Z., Jin, L.T., and Tanaka, K., Talanta, 2003, vol. 60, p. 1123.

    Article  CAS  Google Scholar 

  40. Li, C., Colloids Surf., Ser. B, 2006, vol. 50, p. 147.

    Article  CAS  Google Scholar 

  41. Zinola, C.F., Rodriguez, J.L., and Arevalo, M.C., J. Solid State Electrochem., 2008, vol. 12, p. 523.

    Article  CAS  Google Scholar 

  42. Paras, C.D. and Kennedy, R.T., Electroanalysis, 1997, vol. 9, p. 203.

    Article  CAS  Google Scholar 

  43. Ali, B., Mojgan, Z., Balal, K., and Mohammad, A., Chin. J. Chem., 2010, vol. 28, p. 1967.

    Article  Google Scholar 

  44. Quintana, C., Suarez, S., and Hernandez, L., Sensors Actuators, Ser. B, 2010, vol. 149, p. 129.

    Article  CAS  Google Scholar 

  45. Ma, Q., Ai, Sh., Yin, H., Chen, Q., and Tang, T., Electrochim. Acta, 2010, vol. 55, p. 6687.

    Article  CAS  Google Scholar 

  46. Saumya, V., Prathish, K.P., Dhanya, S., and Rao, T.P., J. Electroanal. Chem., 2011, vol. 663, p. 53.

    Article  CAS  Google Scholar 

  47. Li, C., Colloids Surf., Ser. B, 2006, vol. 50, p. 147.

    Article  CAS  Google Scholar 

  48. Padaki, M., Isloor, A.M., and Wanichapichart, P., Desalination, 2011, vol. 279, p. 409.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Chekin.

Additional information

Published in Russian in Elektrokhimiya, 2016, Vol. 52, No. 2, pp. 201–208.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekin, F., Bagheri, S. Tyrosine sensing on phthalic anhydride functionalized chitosan and carbon nanotube film coated glassy carbon electrode. Russ J Electrochem 52, 174–180 (2016). https://doi.org/10.1134/S1023193515120034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515120034

Keywords

Navigation