Skip to main content
Log in

Electrochemical modification of electrodes based on highly oriented carbon nanowalls

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The original and modified vertically oriented carbon nanowalls (CNWs) were applied onto conducting substrates by the plasma-chemical method. Their electrochemical behavior was studied by the methods of cyclic voltammetry and impedance measurements. The modified and original electrodes were characterized by using the methods of scanning and transmitting electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The nanowalls were modified with the functional groups (FG) via the electrolysis of aqueous solutions at the anodic potentials. Their adsorption properties were studied in the solutions of organic surfactants with the skeleton structure. It is shown that, in the first case, the number of oxygen-containing FG on the CNW surface significantly increases and, in both cases, the electrode capacitance considerably increases (by 30–50 and 3–5 times, respectively). A correlation between the rate constants k 0 of [Ru(NH3)6]2+/3+, [Fe(CN)6]4–/3–, and Fe2+/3+ redox reactions and a degree of nanowall surface functionalization is revealed. The values of k 0 were estimated in the automatic mode using a specially developed program by comparing the potential differences between the peaks of cyclic voltammograms ΔE, which were measured in a wide range of potential scan rate v, and the calculated ΔE (k 0, v) dependences, which were obtained by solving the corresponding diffusion equations. It is shown that the functionalization of CNWs leads to a substantial (by ~103 times) increase in k 0 for the Fe2+/3+ redox system and has almost no effect on the electron transfer in the [Fe(CN)6]3–/4– and [Ru(NH3)6]2+/3+ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosi, A., Chua, C.K., Bonanni, A., and Pumera, M., Chem. Rev., 2014, vol. 114, p. 7150.

    Article  CAS  Google Scholar 

  2. Brownson, D.A.C., Kampouris, D.K., and Banks, C.E., Chem. Soc. Rev., 2012, vol. 41, p. 6944.

    Article  CAS  Google Scholar 

  3. Gan, L., Zhang, D., and Guo, X., Small, 2008, vol. 8, p. 1326.

    Article  Google Scholar 

  4. Wu, S., He, Q., Tan, C., Wang, Y., and Zhang, H., Small, 2013, vol. 9, p. 1160.

    Article  CAS  Google Scholar 

  5. Yuan, W., Zhou, Y., Li, Y., Li, C., Peng, H., Zhang, J., Liu, Z., Dai, L., and Shi, G., Sci. Reports, 2013, vol. 3, p. 2248.

    Google Scholar 

  6. Gueell, A.G., Ebejer, N., Snowden, M.E., Macpherson, J.V., and Unwin, Pr.., J. Am. Chem. Soc., 2012, vol. 134, p. 7258.

    Article  Google Scholar 

  7. Li, W., Tan, C., Lowe, M.A., Abruna, H.D., and Ralph, D.C., ACS Nano, 2011, vol. 5, p. 2264.

    Article  CAS  Google Scholar 

  8. Brownson, D.A.C. and Banks, C.E., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 15825.

    Article  CAS  Google Scholar 

  9. Tan, C. and Rodriguez-Lopez, J., Parks, J.J., Ritzert, N.L., Ralph, D.C., Abruna, H.D, ACS Nano, 2012, vol. 6, p. 3070.

    Article  CAS  Google Scholar 

  10. Brownson, D.A.C., Munro, L.J., Kampouris, D.K., and Banks, C.E., RSC Advances, 2011, vol. 1, p. 978.

  11. Brownson, D.A.C., Varey, S.A., Hussain, F., Haigh, S.J., and Banks, C.E., Nanoscale, 2014, vol. 6, p. 1607.

    Article  CAS  Google Scholar 

  12. Valota, A.T., Kinloch, I.A., Novoselov, K.S., Casiraghi, C., Eckmann, A., Hill, E.W., and Dryfe, R.A.W., ACS Nano, 2011, vol. 5, p. 8809.

    Article  CAS  Google Scholar 

  13. Soin, N., Roy, S.S., Lim, T.H., and McLaughlin, J.A.D., Mater. Chem. Phys., 2011, vol. 129, p. 1051.

    Article  CAS  Google Scholar 

  14. Wang, L., Ambrosi, A., and Pumera, M., Chem. Asian J., 2013, vol. 8, p. 1200.

    Article  CAS  Google Scholar 

  15. Patel, A.N., Collignon, M.G., O’Connell, M.A., Hung, W.O.Y., McKelvey, K., Macpherson, J.V., and Unwin, Pr.., J. Am. Chem. Soc., 2012, vol. 134, p. 20117.

    Article  CAS  Google Scholar 

  16. Patel, A.N., McKelvey, K., and Unwin, Pr.., J. Am. Chem. Soc., 2012, vol. 134, p. 20246.

    Article  CAS  Google Scholar 

  17. Seo, D.H., Yick, S., Han, Z.J., Fang, J.H., and Ostrikov, K., Chem. Sus. Chem., 2014, vol. 7, p. 2317.

    Article  CAS  Google Scholar 

  18. Zheng, B., Zhenhai, W., Haejune, K., Lu, G., Yu, K., and Chen, J., Carbon, 2012, vol. 50, p. 4379.

    Article  Google Scholar 

  19. Cai, M., Outlaw, R.A., Butler, S.M., and Miller, J.R., Carbon, 2012, vol. 50, p. 5481.

    Article  CAS  Google Scholar 

  20. Krivchenko, V.A., Maksimov, Yu.M., Podlovchenko, B.I., Rakhimov, A.T., Suetin, N.V., and Timofeev, M.A., Mendeleev Commun., 2011, vol. 21, p. 264.

    Article  CAS  Google Scholar 

  21. Chua, C.K. and Pumera, M., Chem. Soc. Rev., 2014, vol. 43, p. 291.

    Article  CAS  Google Scholar 

  22. Keeley, G.P., McEvoy N., Nolan, H., Holzinger, M., Cosnier, S., and Duesberg, G.S., Chem. Materials, 2014, vol. 26, p. 807.

    Article  Google Scholar 

  23. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y., Electroanalysis, 2010, vol. 22, p. 1027.

    Article  CAS  Google Scholar 

  24. Krivchenko, V.A., Itkis, D.M., Evlashin, S.A., Semenenko, D.A., Goodilin, E.A., Rakhimov, A.T., Stepanov, A.S., Suetin, N.V., Pilevsky, A.A., and Voronin, P.V., Carbon, 2012, vol. 50, p. 1422.

    Article  Google Scholar 

  25. Mironovich, K.V., Itkis, D.M., Semenenko, D.A., Dagesyan, S.A., Yashina, L.V., Kataev, E.Yu., Mankelevich, Ya.., Suetin, N.V., and Krivchenko, V.A., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 25621.

    Article  CAS  Google Scholar 

  26. Krivenko, A.G., Komarova, N.S., and Piven, N.P., Electrochem. Commun., 2007, vol. 9, p. 2364.

    Article  CAS  Google Scholar 

  27. Komarova, N.S., Krivenko, A.G., Ryabenko, A.G., Naumkin, A.V., Stenina, E.V., and Sviridova, L.N., Carbon, 2012, vol. 50, p. 922.

    Article  CAS  Google Scholar 

  28. Komarova, N.S., Krivenko, A.G., Ryabenko, A.G., and Naumkin, A.V., Carbon, 2013, vol. 53, p. 188.

    Article  CAS  Google Scholar 

  29. Galano, A., Nanoscale, 2010, vol. 2, p. 373.

    Article  CAS  Google Scholar 

  30. Rice, R.J. and McCreery, R.L., Anal. Chem., 1989, vol. 61, p. 1637.

    Article  CAS  Google Scholar 

  31. Haubner, K., Murawski, J., Olk, P., Eng, L.M., Ziegler, C., Adolphi, B., and Jaehne, E., Chem. Phys. Chem., 2010, vol. 11, p. 2131.

    CAS  Google Scholar 

  32. Voylov, D.N., Agapov, A.L., Shulga, Y.M., Sokolov, A.P., and Arbuzov, A.A., Carbon, 2014, vol. 69, p. 563.

    Article  CAS  Google Scholar 

  33. Wagner, C.D., Davis, L.E., Zeller, M.V., Taylor, J.A., Raymond, R.H., and Gale, L.H., Surf. Interface Anal., 1981, vol. 3, p. 211.

    Article  CAS  Google Scholar 

  34. Krivenko, A.G., Matyushenko, V.I., Stenina, E.V., Sviridova, L.N., Krestinin, A.V., Zvereva, G.I., Kurmaz, V.A., Ryabenko, A.G., Dmitriev, S.N., and Skuratov, V.A., Electrochem. Commun., 2005, vol. 7, p. 199.

    Article  CAS  Google Scholar 

  35. Stenina, E.V. and Damaskin, B.B., J. Electroanal. Chem., 1993, vol. 349, p. 31.

    Article  CAS  Google Scholar 

  36. Krivenko, A.G., Komarova, N.S., Stenina, E.V., and Sviridova, L.N., Mendeleev Commun., 2009, vol. 19, p. 317.

    Article  CAS  Google Scholar 

  37. Lazar, P., Karlicky, F., Jurecka, P., Kocman, M., Otyepkova, E., Safarova, K., and Otyepka, M., J. Am. Chem. Soc., 2013, vol. 135, p. 6372.

    Article  CAS  Google Scholar 

  38. Figueiredo-Filho, L.C.S., Brownson, D.A.C., Fatibello-Filho, O., and Banks, C.E., Electroanalysis, 2014, vol. 26, p. 93.

    Article  CAS  Google Scholar 

  39. Rebinder, P.A., Izbrannye trudy (Selected Publications), Moscow: Nauka, 1978.

    Google Scholar 

  40. Gao, B., Kleinhammes, A., Tang, X.P., Bower, C., Wu, Y., and Zhou, O., Chem. Phys. Lett., 1999, vol. 307, p. 153.

    Article  CAS  Google Scholar 

  41. Streeter, I., Wildgoose, G.G., Shao, L., and Compton, R.G., Sens. Actuators, B, 2008, vol. 133, p. 462.

    Article  CAS  Google Scholar 

  42. Podlovchenko, B.I., Krivchenko, V.A., Maksimov, Yu.M., Gladysheva, T.D., Yashina, L.V., Evlashin, S.A., and Pilevsky, A.A., Electrochim. Acta, 2012, vol. 76, p. 137.

    Article  CAS  Google Scholar 

  43. Oldham, K.B. and Myland, J.C., Electrochim. Acta, 2011, vol. 56, p. 10612.

    Article  CAS  Google Scholar 

  44. Nicholson, R.S., Anal. Chem., 1964, vol. 66, p. 1351.

    Google Scholar 

  45. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mendeleev Commun., 1998, vol. 8, p. 56.

    Article  Google Scholar 

  46. Mabbott, G.A., J. Chem. Educ., 1983, vol. 60, p. 697.

    Article  CAS  Google Scholar 

  47. Ambrosi, A. and Pumera, M.J., Phys. Chem. C, 2013, vol. 117, p. 2053.

    Article  CAS  Google Scholar 

  48. Liu, X., Wang, Y., Zhan, L., Qiao, W., Liang, X., and Ling, L., J. Solid State Electrochem., 2011, vol. 15, p. 413.

    Article  CAS  Google Scholar 

  49. Komarova, N.S., Krivenko, A.G., Ryabenko, A.G., Naumkin, A.V., Maslakov, K.I., and Savilov, S.V., J. Electroanal. Chem., 2015, vol. 738, p. 27.

    Article  CAS  Google Scholar 

  50. Chen, P. and McCreery, R.L., Anal. Chem., 1996, vol. 68, p. 3958.

    Article  CAS  Google Scholar 

  51. Diao, P. and Liu, Zh., Adv. Mater., 2010, vol. 22, p. 1430.

    Article  CAS  Google Scholar 

  52. Tran, E., Cohen, A.E., Murray, R.W., Rampi, M.A., and Whitesides, G.M., J. Am. Chem. Soc., 2009, vol. 131, p. 2141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Krivenko.

Additional information

Original Russian Text © A.G. Krivenko, N.S. Komarova, E.V. Stenina, L.N. Sviridova, K.V. Mironovich, Yu.M. Shul’ga, R.A. Manzhos, S.V. Doronin, V.A. Krivchenko, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 10, pp. 1090–1103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivenko, A.G., Komarova, N.S., Stenina, E.V. et al. Electrochemical modification of electrodes based on highly oriented carbon nanowalls. Russ J Electrochem 51, 963–975 (2015). https://doi.org/10.1134/S1023193515100079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515100079

Keywords

Navigation