Russian Journal of Electrochemistry

, Volume 51, Issue 9, pp 807–819 | Cite as

Study of nanostructured electrocatalysts synthesized by the platinum magnetron–ion-beam sputtering onto metallized nanostructured carbonaceous support

  • S. A. Grigoriev
  • A. A. Fedotov
  • V. Yu. Murzin
  • E. V. Khramov
  • Ya. V. Zubavichus
  • P. Millet
  • E. K. Lyutikova
  • S. A. Martemianov
  • V. N. Fateev
Article

Abstract

Nanostructured electrocatalysts for hydrogen electrochemical systems with solid polymer electrolyte were synthesized by the platinum magnetron–ion-beam sputtering onto nanostructured carbonaceous support Vulcan XC-72 premetallized by the impregnation–reduction method. To be able to perform comparative analysis, a number of mono- and bimetallic catalyst samples was synthesized using impregnation–reduction, a traditional method. Thus prepared catalysts were examined by thermogravimetric method, transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and cyclic voltammetry. The electrodes prepared with the synthesized catalysts were tested in fuel cell and water electrolyzer with solid polymer electrolyte. This study confirmed the possibility of preparation of multicomponent catalysts with complicated structures (such as the core–shell structure) over nanostructured carbon support by magnetron sputtering and demonstrated the effectiveness of their performance as parts of electrochemical systems with solid polymer electrolyte. The effect of additional ionbeam processing of the Pt/C electrocatalysts on their efficiency is also studied.

Keywords

magnetron–ion-beam sputtering platinum-metal nanoparticles on carbonaceous support mono- and bimetallic electrocatalysts hydrogen electrochemical system solid polymer electrolyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ralph, T.R. and Hogarth, M.P., Platinum Metals Review, 2002, vol. 46, p. 3.Google Scholar
  2. 2.
    Grigoriev, S.A., Elektrokhim. Energetika, 2009, vol. 9, no. 1, p. 18.Google Scholar
  3. 3.
    Kizling, M.B. and Jaras, S.G., Appl. Catal. A: Gen, 1996, vol. 147, p. 1.CrossRefGoogle Scholar
  4. 4.
    Brault, P., Surf. Coatings Technol., 2011, vol. 205, p. 15.CrossRefGoogle Scholar
  5. 5.
    Hirano, S., Kim, J., and Srinivasan, S., Electrochim. Acta, 1997, vol. 42, p. 1587.CrossRefGoogle Scholar
  6. 6.
    Kim, H., Lee, J., and Kim, J., J. Power Sources, 2008, vol. 180, p. 191.CrossRefGoogle Scholar
  7. 7.
    Alvisi, M., Galtieri, G., Giorgi, L., Giorgi, R., Serra, E., and Signore, M.A., Surf. Coatings Technol., 2005, vol. 200, p. 1325.CrossRefGoogle Scholar
  8. 8.
    Cavarroc, M., Ennadjaoui, A., Mougenot, M., Brault, P., Escalier, R., Tessier, Y., Durand, J., Roualdes, S., Sauvage, T., and Coutanceau, C., Electrochem. Commun., 2009, vol. 11, p. 859.CrossRefGoogle Scholar
  9. 9.
    Thomann, A.-L., Rozenbaum, J.P., Brault, P., Andreazza-Vignolle, C., and Andreazza, P., Appl. Surf. Sci., 2000, vol. 158, p. 172.CrossRefGoogle Scholar
  10. 10.
    Andreazza, P., Andreazza-Vignolle, C., Rozenbaum, J.P., Thomann, A.-L., and Brault, P., Surf. Coatings Technol., 2002, vol. 151–152, p. 122.CrossRefGoogle Scholar
  11. 11.
    Huang, K.-L., Lai, Y.-C., and Tsai, C.-H., J. Power Sources, 2006, vol. 156, p. 224.Google Scholar
  12. 12.
    Wang, H., Xu, C., Cheng, F., Zhang, M., Wang, S., and Ping, J.-S., Electrochem. Commun., 2008, vol. 10, p. 1575.CrossRefGoogle Scholar
  13. 13.
    Mougenot, M., Caillard, A., Brault, P., Baranton, S., and Coutanceau, C., Int. J. Hydrogen Energy, 2011, vol. 36, p. 8429.CrossRefGoogle Scholar
  14. 14.
    Brouzgou, A., Song, S.Q., and Tsiakaras, P., Appl. Catalysis B: Env., 2012, vol. 127, p. 371.CrossRefGoogle Scholar
  15. 15.
    Antolini, E., Energy Environ. Sci., 2009, vol. 2, p. 915.CrossRefGoogle Scholar
  16. 16.
    Grigoriev, S.A., Lyutikova, E.K., Martemianov, S., and Fateev, V.N., Int. J. Hydrogen Energy, 2007, vol. 32, p. 4438.CrossRefGoogle Scholar
  17. 17.
    Massen, C., Mortimer-Jones, T.V., and Johnston, R.L., J. Chem. Soc., Dalton Trans., 2002, vol. 23, p. 4375.CrossRefGoogle Scholar
  18. 18.
    Yashiro, H. and Hoshino, K., Adv. X-ray Analysis, 2004, vol. 47, p. 256.Google Scholar
  19. 19.
    Ammam, M. and Bradley, E., J. Power Sources, 2013, vol. 222, p. 79.CrossRefGoogle Scholar
  20. 20.
    Bliznakov, S.T., Vukmirovic, M.B., Yang, L., Sutter, E.A., and Adzic, R.R., J. Electrochem. Soc., 2012, vol. 159, p. F501.Google Scholar
  21. 21.
    Mariappan, S. and Drillet, J.F., Abstracts DECHEMAForschungsinstitut Research Projects, 2012, p. 41.Google Scholar
  22. 22.
    Cai, Y. and Adzic, R., Adv. Phys. Chem., 2011, p. 1.Google Scholar
  23. 23.
    Fedotov, A.A., Grigoriev, S.A., Glukhov, A.S., Dzhus’, K.A., and Fateev, V.N., Kinet. Katal., 2012, vol. 53, p. 803.CrossRefGoogle Scholar
  24. 24.
    Fedotov, A.A., Grigoriev, S.A., Millet, P., and Fateev, V.N., Int. J. Hydrogen Energy, 2013, vol. 38, p. 8568.CrossRefGoogle Scholar
  25. 25.
    Grigoriev, S.A., Fedotov, A.A., Martemianov, S.A., and Fateev, V.N., Russ. J. Electrochem., 2014, vol. 50, p. 638.CrossRefGoogle Scholar
  26. 26.
    Grigoriev, S.A., Millet, P., and Fateev, V.N., J. Power Sources, 2008, vol. 177, p. 281.CrossRefGoogle Scholar
  27. 27.
    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instr. Meth. Phys. Res. A, 2009, vol. 603, p. 95.CrossRefGoogle Scholar
  28. 28.
    Trofimova, N.N., Veligzhanin, A.A., Murzin, V.Yu., Chernyshov, A.A., Khramov, E.V., Zabluda, V.N., Edel’man, I.S., Slovokhotov, Yu.L., and Zubavichus, Ya.V., Ros. Nanotekhnologii, 2013, vol. 8, no. 5–6, p. 108.Google Scholar
  29. 29.
    Hammersley, A.P., FIT2D, V9.129. Reference Manual. V3.1. ESRF Internal Report: ESRF98HA01T. 1998.Google Scholar
  30. 30.
    Petricek, V., Dusek, M., and Palatinus, L., Jana2006. The Crystallographic Computing System, Prague, Czech Republic: Inst. Physics, 2006.Google Scholar
  31. 31.
    Ravel, B. and Newville, M., J. Synchrotron Rad., 2005, vol. 12, no. 4, p. 537.CrossRefGoogle Scholar
  32. 32.
    Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D., Phys. Rev. B, 1998, vol. 58, p. 7565.CrossRefGoogle Scholar
  33. 33.
    Grigoriev, S.A., Lyutikova, E.K., Martemianov, S., and Fateev, V.N., Int. J. Hydrogen Energy, 2007, vol. 32, p. 4438.CrossRefGoogle Scholar
  34. 34.
    Volobuev, S.A., Grigoriev, S.A., Glukhov, A.S., and Fedotov, A.A., RF Patent no. 2496919 (2012).Google Scholar
  35. 35.
    Ruffino, F., Pecora, E.F., and Grimaldi, M.G., J. Nanosci. Nanotechnol., 2012, vol. 12, p. 1.CrossRefGoogle Scholar
  36. 36.
    Grigoriev, S.A., Lyutikova, E.K., Pritulenko, E.G., Samsonov, D.P., and Fateev, V.N., Russ. J. Electrochem., 2006, vol. 42, p. 1251.CrossRefGoogle Scholar
  37. 37.
    Viet Long, N., Duy Hien, T., Asaka, T., Ohtaki, M., and Nogami, M., Int. J. Hydrogen Energy, 2011, vol. 36, p. 8478.CrossRefGoogle Scholar
  38. 38.
    Sanchez-Padilla, N.M., Montemayor, S.M., Torres, L.A., and Rodriguez Varela, F.J., Int. J. Hydrogen Energy, 2013, vol. 38, p. 12681.CrossRefGoogle Scholar
  39. 39.
    Viet Long, N., Yang, Y., Minh Thi, C., Van Minh, N., Cao, Y., and Nogami, M., Nano Energy, 2013, vol. 2, p. 636.CrossRefGoogle Scholar
  40. 40.
    Zhu, H., Luo, M., Zhang, S., Wei, L., Wang, F., Wang, Z., Wei, Y., and Han, K., Int. J. Hydrogen Energy, 2013, vol. 38, p. 3323.CrossRefGoogle Scholar
  41. 41.
    Ohashi, M., Beard, K.D., Ma, S., Blom, D.A., St-Pierre, J., Van Zee, J.W., and Monnier, J.R., Electrochim. Acta, 2010, vol. 55, p. 7376.CrossRefGoogle Scholar
  42. 42.
    Wu, Y.-N., Liao, S.-J., Guo, H.-F., and Hao, X.-Y., J. Power Sources, 2013, vol. 235, p. 135.CrossRefGoogle Scholar
  43. 43.
    Marshall, A.T., Sunde, S., Tsypkin, M., and Tunold, R., Int. J. Hydrogen Energy, 2007, vol. 32, p. 2320.CrossRefGoogle Scholar
  44. 44.
    van der Merwe, J., Uren, K., van Schoor, G., and Bessarabov, D., Int. J. Hydrogen Energy, 2014, vol. 39, p. 14212.CrossRefGoogle Scholar
  45. 45.
    Fedotov, A.A., Grigoriev, S.A., Glukhov, A.S., Dzhus’, K.A., and Fateev, V.N., Kinet. Katal., 2012, vol. 53.Google Scholar
  46. 46.
    Ficilar, B., Bayrakceken, A., and Eroglu, I., J. Power Sources, 2009, vol. 193, p. 17.CrossRefGoogle Scholar
  47. 47.
    Thanasilp, S. and Hunsom, M., Renewable Energy, 2011, vol. 36, p. 1795.CrossRefGoogle Scholar
  48. 48.
    Al-Akraa, I.M., Mohammad, A.M., El-Deab, M.S., and El-Anadouli, B.E., Int. J. Hydrogen Energy, 2015, vol. 40, p. 1789.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. A. Grigoriev
    • 1
  • A. A. Fedotov
    • 2
  • V. Yu. Murzin
    • 2
    • 3
  • E. V. Khramov
    • 2
  • Ya. V. Zubavichus
    • 2
  • P. Millet
    • 4
  • E. K. Lyutikova
    • 2
  • S. A. Martemianov
    • 5
  • V. N. Fateev
    • 2
  1. 1.National Research University MPEIMexicoSwitzerland
  2. 2.Russian Research Center Kurchatov InstituteMoscowRussia
  3. 3.Topchiev Institute of petrochemical synthesisMoscowRussia
  4. 4.Paris University Sud-11, CNRS UPR 8182OrsayFrance
  5. 5.Institut P’, Université de Poitiers, CNRS UPR 3346, avenue R. PinotPoitiersFrance

Personalised recommendations