Skip to main content
Log in

Molecular dynamics study of Li+ migration through graphene membranes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The throughput of six combinations of modified graphene membranes as regards the penetration of lithium ions is studied by a molecular dynamics method. The membrane modification involves formation of four types of pores and their partial hydrogenation. The best throughput capacity is demonstrated by a pair of membranes with pores represented by bivacancies. In this case, the mobility of lithium ions is the highest in the vertical driving-force direction and the lowest in the horizontal directions. The average level to which the ions in the basic cell are elevated serves as a reliable criterion of efficiency of the device studied. The increase in membrane throughput is associated with weakening of local stresses created by both horizontal and vertical forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A., Nature, 2005, vol. 438, p. 197.

    Article  CAS  Google Scholar 

  2. Segal, M., Nat. Nanotechnol., 2009, vol. 4, p. 611.

    Google Scholar 

  3. Zhu, Y.W., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W.W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., and Ruoff, R.S., Science, 2011, vol. 332, p. 1537.

    Article  CAS  Google Scholar 

  4. Xiao, J., Mei, D., Li, X., Xu, W., Wang, D., Graff, G.L., Bennett, W.D., Nie, Z., Saraf, L.V., Aksay, I.A., Liu, J., and Zhang, J.-G., Nano Lett., 2011, vol. 11, p. 5071.

    Article  CAS  Google Scholar 

  5. Huard, B., Sulpizio, J.A., Stander, N., Todd, K., Yang, B., and Goldhaber-Gordon, D., Phys. Rev. Lett., 2009, vol. 102, p. 026807.

    Article  Google Scholar 

  6. Krekora, P., Su, Q., and Grobe, R., Phys. Rev. Lett., 2004, vol. 92, p. 040406.

    Article  CAS  Google Scholar 

  7. Setare, M.R. and Jahani, D., Phys. B, 2010, vol. 405, p. 1433.

    Article  CAS  Google Scholar 

  8. Allain, P.E. and Fuchs, J.N., Eur. Phys. J. B, 2011, vol. 83, p. 301.

    Article  CAS  Google Scholar 

  9. Lamari, F.D. and Levesque, D., Carbon, 2011, vol. 49, p. 5196.

    Article  Google Scholar 

  10. Pei, Q.X., Zhang, Y.W., and Shenoy, V.B., Carbon, 2010, vol. 48, p. 898.

    Article  CAS  Google Scholar 

  11. Rangel, E., Vazquez, G., Magana, F., and Sansores, E., J. Mol. Model., 2012, vol. 18, p. 5029.

    Article  CAS  Google Scholar 

  12. Gautam, S., Dharamvir, K., and Goel, N., J. Phys. Chem. A, 2011, vol. 115, p. 6383.

    Article  CAS  Google Scholar 

  13. Wick, C.D., Martin, M.G., and Siepmann, J.I., J. Chem. Phys. B, 2000, vol. 104, p. 8008.

    Article  CAS  Google Scholar 

  14. Ataca, C., Akturk, E., Ciraci, S., and Ustunel, H., Appl. Phys. Lett., 2008, vol. 93, p. 043123.

    Article  Google Scholar 

  15. Kheirabadi, N. and Shafiekhani, A., Phys. E (Amsterdam, Neth.), 2013, vol. 47, p. 309.

    Article  CAS  Google Scholar 

  16. Tersoff, J., Phys. Rev. Lett., 1988, vol. 61, p. 2879.

    Article  CAS  Google Scholar 

  17. Stuart, S.J., Tutein, A.V., and Harrison, J.A., J. Chem. Phys., 2000, vol. 112, p. 6472.

    Article  CAS  Google Scholar 

  18. Tao, Z. and Cummings, P.T., Mol. Simul., 2007, vol. 33, p. 1255.

    Article  CAS  Google Scholar 

  19. Chan, Y. and Hill, J.M., Micro Nano Lett., 2010, vol. 5, p. 247.

    Article  CAS  Google Scholar 

  20. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R., J. Chem. Phys., 1984, vol. 81, p. 3684.

    Article  CAS  Google Scholar 

  21. Galashev, A.Y. and Polukhin, V.A., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2014, vol. 8, p. 1078.

    Article  Google Scholar 

  22. Galashev, A.E., Tech. Phys., 2014 vol. 59, no. 4, p. 467.

    Article  CAS  Google Scholar 

  23. Davydov, S.Yu., Phys. Solid State, 2012, vol. 54. no. 4, p. 875.

    Article  CAS  Google Scholar 

  24. Rangel, E., Ramirez-Arellano, J.M., Carrillo, I., and Magana, L.F., Int. J. Hydrogen Energy, 2011, vol. 36, p. 3657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Original Russian Text © A.E. Galashev, Yu.P. Zaikov, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 9, pp. 983–993.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashev, A.E., Zaikov, Y.P. Molecular dynamics study of Li+ migration through graphene membranes. Russ J Electrochem 51, 867–876 (2015). https://doi.org/10.1134/S1023193515090050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515090050

Keywords

Navigation