Skip to main content
Log in

Electrochemistry of Pb(II)/Pb during preparation of lead wires from PbO in choline chloride—urea deep eutectic solvent

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemistry of Pb(II)/Pb on a stainless steel electrode during the preparation of lead wires from PbO in choline chloride (ChCl)-urea deep eutectic solvent (DES) was investigated by means of cyclic voltammetry, cathodic polarization and chronoamperometry. The experimental results indicated that the reduction of Pb(II) to Pb is a quasi—reversible process controlled by diffusion at temperature varying from 323 to 343 K, and the corresponding apparent activation energy E a is 52.37 kJ mol-1. The analysis of chronoamperometry measurements suggested that the initial stage of nucleation of lead on stainless steel electrode is a three-dimensional instantaneous nucleation under diffusion control. The effects of reaction time and temperature on the morphology of lead deposits are also examined. The lead wires obtained at 343 K for 120 min have a mean particle size of 30 µ.m in length and 2.5 µ.m in diameter. Based on experimental evidence, the deposition mechanism of sub-micrometer lead wires on stainless steel substrate is proposed by diffusion controlled growth mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavlov, D., J. Power Sources, 1993, vol. 42, p. 345.

    Article  CAS  Google Scholar 

  2. Rashkova, B., Guel, B., and Pötzschke, R.T., Electrochim. Acta, 1998, vol. 43 p. 3021.

    Article  CAS  Google Scholar 

  3. Ehlers, C., König, U., and Staikovm G., Electrochim. Acta, 2001, vol. 47, p. 379.

    Article  CAS  Google Scholar 

  4. Nikolic, N.D., Brankovic, G., and Lacnjevac, U.C., J. Solid State Electrochem., 2012, vol. 16, p. 2121.

    Article  CAS  Google Scholar 

  5. Yang, Y.J., Li, W., and Xiao, F., Russ. J. Electrochem., 2013, vol. 49, p. 381.

    Article  CAS  Google Scholar 

  6. Nikolic, N.D., Popov, K.I., and Zivkovic, P.M., J. Electroanal. Chem., 2013, vol. 691, p. 66.

    Article  CAS  Google Scholar 

  7. Yi, G. and Schwarzacher, W, Appl. Phys. Lett., 1999, vol. 74, p. 1746.

    Article  CAS  Google Scholar 

  8. Michotte, S., Piraux, L., and Dubois, S., Physica, Ser. C, 2002, vol. 377, p. 267.

    Article  CAS  Google Scholar 

  9. Parthasaradhy, N.V., Practical Electroplating Handbook, Englewood Cliffs: Prentice Hall, 1989, p. 89.

    Google Scholar 

  10. German, R.M., Powder Metallurgy Science, Princeton: Metal Powder Industries Federation, 1984, p. 52.

    Google Scholar 

  11. Pavlovic, M.G. and Popov, K.I., Electrochem. Encyclopedia, 2005, p. 43.

    Google Scholar 

  12. Orhan, G. and Hapg, G., Powder Technol., 2010, vol.201, p. 57.

    Google Scholar 

  13. Muresan, L., Oniciu, L., and Froment, M., Electrochim. Acta, 1992, vol. 37, p. 2249.

    Article  CAS  Google Scholar 

  14. Doulakas, L., Novy, K., and Stucki, S., Electrochim. Acta, 2000, vol. 46, p. 349.

    Article  CAS  Google Scholar 

  15. Scharifker, B. and Hills, G., Electrochim. Acta, 1983, vol. 28, p. 879.

    Article  CAS  Google Scholar 

  16. Mostany, J., Parra, J., and Scharifker, B.R., J. Appl. Electrochem., 1986, vol. 16, p. 333.

    Article  CAS  Google Scholar 

  17. Avellaneda, C.O., Napolitano, M.A., and Kaibara, E.K., Electrochim. Acta, 2005, vol. 50, p. 1317.

    Article  CAS  Google Scholar 

  18. Popov, K.I., Krstajic, N.V., and Pantelic, R.M., Surf. Technol., 1985, vol. 26, p. 177.

    Article  CAS  Google Scholar 

  19. Exposito, E., Gonzalez-Garcla, J., and Bonete, P., J. Power Sources, 2000, vol. 87, p. 137.

    Article  CAS  Google Scholar 

  20. Popov, K.I., Stojilkovic, E.R., and Radmilovic, V., Powder Technol., 1997, vol. 93, p. 55.

    Article  CAS  Google Scholar 

  21. Dobrev, T. and Rashkov, S., Hydrometallurgy, 1996, vol. 40, p. 277.

    Article  CAS  Google Scholar 

  22. Pawar, P.M., Jarag, K.J., and Shankarling, G.S., Green Chem., 2011, vol. 13, p. 2130.

    Article  CAS  Google Scholar 

  23. Gore, S., Baskaran, S., and Koenig, B., Green Chem., 2011, vol. 13, p. 1009.

    Article  CAS  Google Scholar 

  24. Abbott, A.P., Cullis, P.M., and Gibson, M.J., Green Chem., 2007, vol. 9, p. 868.

    Article  CAS  Google Scholar 

  25. Su, W.C., Wong, D.S., and Li, M.H., J. Chem. Eng. Data, 2009, vol. 54, p. 1951.

    Article  CAS  Google Scholar 

  26. Rimsza, J.M. and Corrales, L.R., Comput. Theor. Chem., 2012, vol. 987, p. 57.

    Article  CAS  Google Scholar 

  27. Abbott, A.P., Capper, G., and David, L.D., J. Chem. Eng. Data, 2006, vol. 51, p. 1280.

    Article  CAS  Google Scholar 

  28. Yue, D., Jia, Y, Yao, Y., and Sun, J., Electrochim. Acta, 2012, vol. 65, p. 30.

    Article  CAS  Google Scholar 

  29. Zheng, Y., Dong, K., and Wang, Q., Sci. China Chem., 2012, vol. 55, p. 1587.

    Article  CAS  Google Scholar 

  30. Tsuda, T., Boyd, L.E., and Kuwabata, S., J. Electrochem. Soc., 2010, vol. 157, p. F96.

    Article  CAS  Google Scholar 

  31. Ru, J.J., Hua, Y.X., Xu, C.Y., Li, J., Li, Y., Wang, D., Gong, K., and Zhou, Z.R., Adv. Powder Technol., DOI: 10.1016/j.apt.2014.08.008.

  32. Ru, J.J., Hua, Y.X., Li, J., Xu, C.Y., Li, Y., Wang, D., Qi, C.C., and Jie, Y.F., J. Mol. Liq, 2014, vol. 199, p. 208.

    Article  CAS  Google Scholar 

  33. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals Applications, N.Y.: Wiley, 1980, p. 230.

    Google Scholar 

  34. Brown, E.R. and Sifer, J.R., Phys. Methods Chem., 1986, vol. 2, p. 273.

    Google Scholar 

  35. Nagaishi, R., Arisaka, M., and Kimura, T., J. Alloys. Compd., 2007, vol. 431, p. 221.

    Article  CAS  Google Scholar 

  36. Rao, J., Venkatesan, K.A., and Nagarajan, K., Electrochim. Acta, 2009, vol. 54, p. 4718.

    Article  CAS  Google Scholar 

  37. Gu, YY, Zhou, Q.H., and Yang, T.Z., T. Nonferr. Metal Soc., 2011, vol. 21, p. 1407.

    Article  CAS  Google Scholar 

  38. Guo, W., Hou, Y., and Ren, S., J. Chem. Eng. Data, 2013, vol. 58, p. 866.

    Article  CAS  Google Scholar 

  39. Katayama, Y., Fukui, R., and Miura, T., J. Electrochem. Soc., 2013, vol. 160, p. D251.

  40. Carlos, I.A., Siqueira, J.L., and Finazzi, G.A., J. Power Sources, 2003, vol. 117, p. 179.

    Article  CAS  Google Scholar 

  41. Wong, S.M. and Abrantes, L.M., Electrochim. Acta, 2005, vol. 51, p. 619.

    Article  CAS  Google Scholar 

  42. Zhang, Q.B. and Hua, Y.X., J. Appl. Electrochem., 2011, vol. 41, p. 705.

    Article  CAS  Google Scholar 

  43. Milchev, A., Fundamentals of Nucleation Growth, N.Y: Kluwer, 2002, p. 228.

    Google Scholar 

  44. Ostanina, T.N., Rudoi, V.M., and Darintseva, A.B., Powder Metall. Met., Ser. C, 2014, vol. 52, p. 489.

    Article  CAS  Google Scholar 

  45. Goia, D.V., New J. Chem., 1998, vol. 22, p. 1203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hua.

Additional information

Published in Russian in Elektrokhimiya, 2015, Vol. 51, No. 8, pp. 873-882.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ru, J., Hua, Y., Xu, C. et al. Electrochemistry of Pb(II)/Pb during preparation of lead wires from PbO in choline chloride—urea deep eutectic solvent. Russ J Electrochem 51, 773–781 (2015). https://doi.org/10.1134/S1023193515080108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515080108

Keywords

Navigation