Skip to main content
Log in

Study of complex formation between Kryptofix 21 and UO 2+2 cation in some binary mixed non-aqueous solutions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The complexation reaction between UO 2+2 cation and the macrocyclic ligand, Kryptofix 21, was studied in acetonitrile-methanol (AN–MeOH) and acetonitrile–ethylacetate (AN–EtOAc) binary solvent solutions at different temperatures using the conductometric method. In most cases, Kryptofix 21 forms a 1: 1 [M: L] complex with the UO 2+2 cation. But in some of the studied solvent systems, 1: 2 [M: L2] and also 1: 3 [M: L3] complexes are formed in solutions. The results obtained in this study show that the mechanism of the complexation process between the uranyl cation and Kryptofix 21 changes with the nature and composition of the solvent system. In the case of the binary solvent solutions (mol % AN = 50 and 60), the order of stability constant of the complex at all studying temperatures was found to be: AN–EtOAc > AN–MeOH. The values of thermodynamic quantities (ΔS °c , ΔH °c ) for the formation of (Kryptofix 21–UO2)2+ complex were obtained from temperature dependence of the stability constant of the complex using the van’t Hoff plots. The results show that the values of these parameters are influenced by the nature and composition of the mixed solvents and is most solvent systems, the 1: 1 complexation reaction between UO 2+2 and the macrocyclic ligand is athermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pedersen, C.J., J. Am. Chem. Soc., 1967, vol. 89, p. 2495.

    Article  CAS  Google Scholar 

  2. Ekmekci, G., Uzun, D., and Somer, G., J. Memb. Sci., 2007, vol. 288, p. 36.

    Article  CAS  Google Scholar 

  3. Chandra, S., Buschbeck, R., and Lang, H., Talanta, 2006, vol. 70, p. 1087.

    Article  CAS  Google Scholar 

  4. Chandra, S. and Lang, H., Sens. Actuators, Ser. B, 2006, vol. 114, p. 849.

    Article  CAS  Google Scholar 

  5. Gupta, V.K., Khayat, M.Al., and Minocha, A.K., Anal. Chim. Acta, 2005, vol. 532, p. 153.

    Article  CAS  Google Scholar 

  6. Kim, S., Kim, H., and Noh, K.H., Talanta, 2003, vol. 61, p. 709.

    Article  CAS  Google Scholar 

  7. Rawat, N., Mohapatra, P.K., and Lakshmi, D.S., J. Memb. Sci., 2006, vol. 275, p. 82.

    Article  CAS  Google Scholar 

  8. Malcik, N., Tunoglu, N., and Caglar, P., Sens. Actuators, Ser. B, 1998, vol. 53, p. 204.

    Article  CAS  Google Scholar 

  9. Seyhan, S. and Tu, Y., Tetrahedron, 2006, vol. 17, p. 1700.

    Article  CAS  Google Scholar 

  10. Saad, B., Chong, C.C., and Ali, A.S.M., Anal. Chim. Acta, 2006, vol. 555, p. 146.

    Article  CAS  Google Scholar 

  11. Heitzman, H., Young, B.A., and Rausch, D.J., Talanta, 2006, vol. 69, p. 527.

    Article  CAS  Google Scholar 

  12. Nakamura, K., Nishiyama, S., and Tsuruya, S., J. Mol. Catal., 1994, vol. 93, p. 195.

    Article  CAS  Google Scholar 

  13. Strasser, B.O., Hallenga, K., and Popov, A.I., J. Am. Chem. Soc., 1985, vol. 107, p. 789.

    Article  CAS  Google Scholar 

  14. Loyola, V.M., Pizer, R., and Wilkins R.G., J. Am. Chem. Soc., 1977, vol. 99, p. 7185.

    Article  CAS  Google Scholar 

  15. Rofouei, M., Ahmadalinezhah, A., and Taghdiri, M., J. Incl. Phenom. Macrocycl. Chem., 2007, vol. 58, p. 377.

    Article  CAS  Google Scholar 

  16. Al-Mustafa, J., Hamzah, S., and Marji, D., J. Sol. Chem., 2004, vol. 30, p. 681.

    Article  Google Scholar 

  17. Rounaghi, G.H., Rahimi Bajestani, M., and Ghaemi, A., Asian J. Chem., 2008, vol. 20, p. 299.

    CAS  Google Scholar 

  18. Rounaghi, G.H., Soleamani, A., and Sanavi, K.R., J. Incl. Phenom. Macrocycl. Chem., 2007, vol. 58, p. 43.

    Article  CAS  Google Scholar 

  19. Rounaghi, G.H. and Gerey, N.G., Asian J. Chem., 2007, vol. 19, p. 929.

    CAS  Google Scholar 

  20. Rounaghi, G.H., Masroornia, M., and Ghaemi A., Asian J. Chem., 2007, vol. 19, p. 1679.

    CAS  Google Scholar 

  21. Rounaghi, G.H. and Sanavi, R., Pol. J. Chem., 2006, vol. 80, p. 719.

    CAS  Google Scholar 

  22. Rounaghi, G.H., Sanavi Khoshnood, R., and Arbab Zavvar, M.H., J. Incl. Phenom. Macrocycl. Chem., 2006, vol. 54, p. 247.

    Article  CAS  Google Scholar 

  23. Seller, R.M., Radiat. Phys. Chem., 1983, vol. 21, p. 295.

    Article  Google Scholar 

  24. Rounaghi, G.H., Mohammad Zade Kakhki, R., J. Incl. Phenom. Macrocycl. Chem., 2009, vol. 63, p. 117.

    Article  CAS  Google Scholar 

  25. Ansari Fard, M., Rounaghi, G.H., and Chamsaz, M., J. Incl. Phenom. Macrocycl. Chem., 2009, vol. 64, p. 49.

    Article  CAS  Google Scholar 

  26. Rounaghi, G.H., Nazari, E., and Ghaemi, A., J. Coord. Chem., 2010, vol. 63, p. 2349.

    Article  CAS  Google Scholar 

  27. Ansari Fard, M., Rounaghi, G.H., and Chamsaz, M., Asian J. Chem., 2009, vol. 21, p. 2799.

    CAS  Google Scholar 

  28. Genplot Computer Graphic Service, U.S.A., 1989.

  29. Gutmann, V., N.Y.: Plenum press, 1978.

  30. Rounaghi, G.H. and Popov, A.I., Polyhedron, 1986, vol. 5, p. 1935.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Rounaghi.

Additional information

Published in Russian in Elektrokhimiya, 2015, Vol. 51, No. 8, pp. 856–862.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, M., Rounaghi, G.H. Study of complex formation between Kryptofix 21 and UO 2+2 cation in some binary mixed non-aqueous solutions. Russ J Electrochem 51, 758–763 (2015). https://doi.org/10.1134/S102319351508008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351508008X

Keywords

Navigation