Skip to main content
Log in

Nanocomposite network polymer gel-electrolytes: TiO2- and Li2TiO3-nanoparticle effects on their structure and properties

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effects of TiO2-(∼60 nm) and Li2TiO3-(∼20 nm) nanoparticles on the conductivity, structure, and mechanical strength of (polyether diacrylate-LiClO4-ethylene carbonate)-based polymer gelelectrolytes are studied. When the gel-electrolytes are synthesized with the TiO2- and Li2TiO3-nanoparticles ultrasonic pretreatment, both polyether diacrylate and ethylene carbonate are partially decomposed in the solution; this is evidenced by the appearance of -CH3-group signal at 1.2 ppm in 1H-NMR-spectra, as well, as by the peak area analysis. The gel-electrolyte matrix partial decomposition was shown not to affect the network polymer electrolyte conductivity and mechanical properties. Analysis of NMR spectra for 7Li nuclei, taken with nanocomposite polymer electrolyte rotating under magic angle, revealed two Li+ ion environments: with the nanoparticles and the polymer matrix. Upon the adding of TiO2 nanoparticles (10 mass %) the polymer electrolyte conductivity increased by order of magnitude (up to 1.8 × 10−3 S/cm at 20°C); upon the adding of Li2TiO3, by a factor of 2 only (up to 7.0 × 10−4 S/cm at 20°C). The electrolyte-solution ultrasonic treatment increased the films’ mechanical strength; the larger effect occurred with Li2TiO3 (the modulus of elasticity is 15 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weston, J.E. and Steele, B.C.H., Solid State Ionics, 1982, vol. 7, p. 75.

    Article  CAS  Google Scholar 

  2. Gray, F.M., Polymer electrolytes, Cambridge: Royal Soc. Chem., 1997.

    Google Scholar 

  3. Armand, M.B., Chabagno, J.M., and Duclot, M., Fast Ion Transport in Solids, Amsterdam: Elsevier, 1979.

    Google Scholar 

  4. Yarmolenko, O.V. and Khatmullina, K.G., Al’ternativnaya energetika i ekologiya, 2010, no. 3, p. 59.

    Google Scholar 

  5. Yarmolenko, O.V., Nanostrukturirovannye materialy dlya zapasaniya i preobrazovaniya energii (Nanostructured Materials for Energy Storage and Conversion), Razumov, V.F., Klyuev, M.V., Eds., Ivanovo: Ivanovo Gos. Univ., 2009.

  6. Yarmolenko, O.V. and Yudina, A.V., Nanokompozitnye polimernye elektrolity-2 / Organicheskie i gibridnye nanomaterialy: tendentsii i perspektivy (Nanocomposite Polymer Electrolytes-2 / Organic and Hybrid Nanomaterials: Trends and Prospects), Razumov, V.F. and Klyuev, M.V., Eds., Ivanovo: Ivanovo Gos. Univ., 2013.

  7. Aravindan, V., Vickraman, P., and Krishnaraj, K., Curr. Appl. Phys, 2009, vol. 9, p. 1474.

    Google Scholar 

  8. Li, Z.H., Xiao, Q.Z., Zhang, P., Zhang, H.P., Wu, Y.P., and Ree, T.V., Funct. Mater. Lett, 2008, vol. 1, no. 2, p. 139.

    CAS  Google Scholar 

  9. Li, Z.H., Zhang, H.P., Zhang, P., Li, G.C., Wu, Y.P., and Zhou, X.D., J. Membr. Sci., 2008, vol. 322, no. 2, p. 416.

    CAS  Google Scholar 

  10. Aravindan, V. and Vickraman, P., Mater. Chem. Phys., 2009, vol. 115, p. 251.

    CAS  Google Scholar 

  11. Liao, Y.H., Rao, M.M., Li, W.S., Yang, L.T., Zhu, B.K., Xu, R., and Fu, C.H., J. Membr. Sci., 2010, vol. 352, p. 95.

    CAS  Google Scholar 

  12. Aravindan, V., Vickraman, P., and Kumar, T.P., J. Membr. Sci., 2007, vol. 305, p. 146.

    CAS  Google Scholar 

  13. Vijayakumar, G., Karthick, S.N., Sathiya Priya, A.R., Ramalingam, S., and Subramania, A., J. Solid State Electrochem., 2008, vol. 12, p. 1135.

    CAS  Google Scholar 

  14. Golubev, P.A., Tulibaeva, G.Z., Shuvalova, N.I., and Yarmolenko, O.V., Vestn. Mosk. Univ., Ser. 2, Khimiya, 2008, vol. 49, p. 389.

    Google Scholar 

  15. Aravindan, V., Vickraman, P., Sivashanmugam, A., Thirunakaran, R., and Gopukumar, S., Current Appl. Phys., 2013, vol. 13, p. 293.

    Google Scholar 

  16. Aravindan, V. and Vickraman, P., J. Renew. Sust. Energy, 2009, vol. 1, no. 2, p. 023108.

    Google Scholar 

  17. Deka, M. and Kumar, A., Electrochim. Acta, 2010, vol. 55, p. 1836.

    CAS  Google Scholar 

  18. Deka, M. and Kumar, A., J. Power Sources, 2011, vol. 196, p. 1358.

    CAS  Google Scholar 

  19. Deka, M., Kumar, A., Deka, H., and Karak, N., Ionics, 2012, vol. 18, p. 181.

    Article  CAS  Google Scholar 

  20. Manuel Stephan, A. and Nahm, K.S., Polymer, 2006, vol. 47, p. 5952.

    Article  Google Scholar 

  21. Yarmolenko, O.V., Khatmullina, K.G., Bogdanova, L.M., Shuvalova, N.I., Dzhavadyan, E.A., Marinin, A.A., and Volkov, V.I., Russ. J. Electrochem., 2014, vol. 50, p. 336.

    CAS  Google Scholar 

  22. Rozenberg, B.A., Bogdanova, L.M., Boiko, G.N., Gur’eva, L.L., Dzhavadyan, E.A., Surkov, N.F., Estrina, G.A., and Estrin, Ya.I., Vysokomol. Soedin., Ser. A, 2005, vol. 47, p. 952.

    CAS  Google Scholar 

  23. Estrina, G.A., Komarov, B.A., Estrin, Ya.I., and Rozenberg, B.A., Vysokomol. Soedin., Ser. A, 2004, vol. 46, p. 207.

    CAS  Google Scholar 

  24. Marinin, A.A., Khatmullina, K.G., Volkov, V.I., and Yarmolenko, O.V., Russ. J. Electrochem., 2011, vol. 47, p. 717.

    CAS  Google Scholar 

  25. Khatmullina, K.G., Yarmolenko, O.V., and Bogdanova, L.M., Polymer Science, Ser. A, 2010, vol. 52, p. 2140.

    CAS  Google Scholar 

  26. Marinin, A.A., Khatmullina, K.G., Volkov, V.I., Yarmolenko, O.V., and Zabrodin, V.A., Izv. Akad. Nauk, Ser. Khim., 2011, vol. 60, p. 1071.

    Google Scholar 

  27. Yarmolenko, O.V., Khatmullina, K.G., Tulibaeva, G.Z., Bogdanova, L.M., and Shestakov, A.F., Russ. Chem. Bull., 2012, vol. 61, p. 539.

    CAS  Google Scholar 

  28. Croce, F., Curini, R., Martinelli, A., Persi, L., Ronci, F., Scrosati, B., and Caminiti, R., J. Phys. Chem., 1999, vol. 103, p. 10632.

    CAS  Google Scholar 

  29. Kumar, B. and Scanlon, L.G., Solid State Ionics, 1999, vol. 124, p. 239.

    Article  CAS  Google Scholar 

  30. Scrosati, B., Croce, F., and Persi, L., J. Electrochem. Soc., 2000, vol. 147, p. 1718.

    CAS  Google Scholar 

  31. Perdew, P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    CAS  Google Scholar 

  32. Laikov, D.N., Chem. Phys. Lett., 1997. V. 281. P. 151.

    CAS  Google Scholar 

  33. Maklakov, A.I., Skirda, V.D., and Fatkullin, N.F., Samodiffuziya v rastvorakh i rasplavakh polimerov (Self-Diffusion in Polymer Solutions and Melts), Kazan: Kazan Gos. Univ., 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Yarmolenko.

Additional information

Original Russian Text © O.V. Yarmolenko, A.V. Yudina, A.A. Marinin, A.V. Chernyak, V.I. Volkov, N.I. Shuvalova, A.F. Shestakov, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 5, pp. 479–488.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarmolenko, O.V., Yudina, A.V., Marinin, A.A. et al. Nanocomposite network polymer gel-electrolytes: TiO2- and Li2TiO3-nanoparticle effects on their structure and properties. Russ J Electrochem 51, 412–420 (2015). https://doi.org/10.1134/S1023193515050171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515050171

Keywords

Navigation