Skip to main content
Log in

Optimization of composite cathode based on praseodymium cuprate for intermediate-temperature solid oxide fuel cells

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A complex study of conducting and catalytic properties of composite materials of Pr2CuO4−x Ce0.9Gd0.1O1.95 (x = 20, 33, 50 wt %) is carried out. Conductivity of composites is measured using a four probe technique in air. Analysis of the dependence of conductivity on the composition at a given temperature shows that the conducting properties of composites can be described based on the percolation model. Electrocatalytic properties of composite cathodes supported on the surface of the Ce0.9Gd0.1O1.95 (GDC) solid electrolyte using the screen printing technique were studied by the impedance spectroscopy technique in the range of oxygen partial pressures of 10−2 to 0.21 atm at the temperatures of 500–900°C. Analysis of polarization resistance (R η) isotherms on the partial pressure of oxygen shows that the rate-determining steps of the oxygen reduction reaction on the cathode are dissociation of adsorbed molecular oxygen and charge transfer. It is found that the minimum of polarization resistance corresponding to 0.4 Ohm cm2 at 700°C in air is reached in the range of intermediate temperatures (500–750°C) for the composition containing 33 wt % GDC. On the basis of the obtained data, the PCO-33GDC composite can be considered as a promising cathode material for intermediate-temperature solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele, B.C.H. and Heinzel, A., Nature, 2001, vol. 414, p. 345.

    Article  CAS  Google Scholar 

  2. Aguadero, A., Fawcett, L., Taub, S., Woolley, R., Wu, K.T., Xu, N., Kilner, J.A., and Skinner, S.J., J. Mater. Sci., 2012, vol. 47, p. 3925.

    CAS  Google Scholar 

  3. Tarancon, A., Burriel, M., Santiso, J., Skinner, S.J., and Kilner, J.A., J. Mater. Chem., 2010, vol. 20, p. 3799.

    CAS  Google Scholar 

  4. Kenjo, T., Osawa, S., and Fujikawa, K., J. Electrochem. Soc., 1991, vol. 138, no. 2, p. 349.

    CAS  Google Scholar 

  5. Murray, E.P., Tsai, T., and Barnett, S.A., Solid State Ionics, 1998, vol. 110, p. 235.

    Article  CAS  Google Scholar 

  6. Kim, J.D., Kim, G.D., Moon, J.W., Park, Y.I., Lee, W.H., Kobayashi, K., Nagai, M., and Kim, C.-E., Solid State Ionics, 2001, vol. 143, p. 379.

    Article  CAS  Google Scholar 

  7. Murray, E.P. and Barnett, S.A., Solid State Ionics, 2001, vol. 143, p. 265.

    Article  Google Scholar 

  8. Jiang, S. and Wang, W., J. Electrochem. Soc., 2005, vol. 152, p. A1398.

    CAS  Google Scholar 

  9. Wang, W.G. and Mogensen, M., Solid State Ionics, 2005, vol. 176, p. 457.

    Article  CAS  Google Scholar 

  10. Dusastre, V. and Kilner, J.A., Solid State Ionics, 1999, vol. 126, p. 163.

    Article  CAS  Google Scholar 

  11. Murray, E.P., Sever, M.J., and Barnett, S.A., Solid State Ionics, 2002, vol. 148, p. 27.

    Article  Google Scholar 

  12. Leng, Y., Chan, S.H., and Liu, Q., Int. J. Hydrogen Energy, 2008, vol. 33, p. 3808.

    CAS  Google Scholar 

  13. Sun, L.-P., Zhao, H., Li, Q., Huo, L.-H., Viricelle, J.-P., and Pijolat, C., Int. J. Hydrogen Energy, 2011, vol. 36, p. 12555.

    CAS  Google Scholar 

  14. Dotelli, G., Mari, C.M., Ruffo, R., Pelosato, R., and Sora, I.N., Solid State Ionics, 2006, vol. 177, p. 1991.

    Article  CAS  Google Scholar 

  15. Guo, W., Liu, J., Jin, C., Gao, H., and Zhang, Y., J. Alloys Compd., 2009, vol. 473, p. 43.

    CAS  Google Scholar 

  16. Kaluzhskikh, M.S., Kazakov, S.M., Mazo, G.N., Istomin, S.Ya., Antipov, E.V., Gippius, A.A., Fedotov, Yu., Bredikhin, S.I., Liu, Y., Svensson, G., and Shen, Z., J. Solid State Chem., 2011, vol. 184, p. 698.

    CAS  Google Scholar 

  17. Lyskov, N.V., Kaluzhskikh, M.S., Leonova, L.S., Mazo, G.N., Istomin, S.Ya., and Antipov, E.V., Int. J. Hydrogen Energy, 2012, vol. 37, no. 23, p. 18357.

    CAS  Google Scholar 

  18. Mazo, G.N., Lyskov, N.V., and Leonova, L.S., Solid State Ionics, 2011, vol. 182, p. 64.

    Article  CAS  Google Scholar 

  19. Hayashi, H., Kanoh, M., Quan, C.J., Inaba, H., Wang, S., Dokiya, M., and Tagawa, H., Solid State Ionics, 2000, vol. 132, p. 227.

    Article  CAS  Google Scholar 

  20. Kolchina, L.M., Lyskov, N.V., Petukhov, D.I., and Mazo, G.N., J. Alloys Compd., 2014, vol. 605, p. 89.

    CAS  Google Scholar 

  21. Uzumaki, T., Hashimoto, K., and Kamehara, N., Phys. C, 1992, vol. 202, p. 175.

    CAS  Google Scholar 

  22. Snarskii, A.A., Bezsudnov, I.V., and Sevryukov, V.A., Protsessy perenosa v makroskopicheskikh neuporyadochennykh sredakh: Ot teorii srednego polya do perkolyatsii (Transport Processes in Macroscopic Disordered Media: from Mean-Field Theory to Percolation), Moscow: Izd-vo LKI, 2007.

    Google Scholar 

  23. Takeda, Y., Kanno, R., Noda, M., Tomida, Y., and Yamamoto, O., J. Electrochem. Soc., 1987, vol. 134, p. 2656.

    CAS  Google Scholar 

  24. Lyskov, N.V., Mazo, G.N., Leonova, L.S., Kolchina, L.M., Istomin, S.Ya., and Antipov, E.V., Russ. J. Electrochem., 2013, vol. 49, no. 8, p. 747.

    CAS  Google Scholar 

  25. Stevenson, J.W., Armstrong, T.R., Carnheim, R.D., Pederson, L.R., and Weber, W.J., J. Electrochem. Soc., 1996, vol. 143, p. 2722.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Lyskov.

Additional information

Original Russian Text © N.V. Lyskov, L.M. Kolchina, M.Z. Galin, G.N. Mazo, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 5, pp. 520–528.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyskov, N.V., Kolchina, L.M., Galin, M.Z. et al. Optimization of composite cathode based on praseodymium cuprate for intermediate-temperature solid oxide fuel cells. Russ J Electrochem 51, 450–457 (2015). https://doi.org/10.1134/S1023193515050079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515050079

Keywords

Navigation