Skip to main content
Log in

Proton conductivity of perfluorinated and nanocomposite ion exchange membranes in aqueous and water-methanol solutions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The proton conductivity of commercial perfluorinated membranes Nafion-115, MF-4SC and synthesized nanocomposite membranes (polyvinylidenefluoride-sulfonated polystyrene, ultra high molecular weight polyethylene-sulfonated polystyrene, polypropylene-sulfonated polystyrene) is studied as a function of concentration of the water-methanol solution sorbed by membranes, by means of contact impedancemetry with the regulated pressure on the electrode-membrane contacts. The optimal experimental conditions are shown to correspond to a pack of several membranes pressed between gold electrodes with the strength of no less than 40 kg/cm2. It is found that the specific conductivity of synthesized membranes in water at 24°C is 50–120 mS/cm, which virtually coincides with the corresponding values for Nafion-115 and MF-4SC. As the concentration of the water-methanol solution increases from 0 to 60%, the specific conductivity of Nafion-115 and MF-4SC membranes decreases by 30%. The specific conductivity of synthesized nanocomposite membranes decreases by 40–55% in this concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edmondson, C.A., Stallworth, P.E., Wintersgill, M.C., Fontanella, J.J., Daib, Y., and Greenbaum, S.G., Electrochim. Acta, 1998, vol. 43, p. 1295.

    Article  CAS  Google Scholar 

  2. Affoune, A.M., Yamada, A., and Umeda, M., J. Power Sources, 2005, vol. 148, p. 9.

    Article  CAS  Google Scholar 

  3. Saito, M., Tsuzuki, S., Hayamizu, K., and Okada, T., J. Phys. Chem. B, 2006, vol. 110, p. 24410.

    Article  CAS  Google Scholar 

  4. Chaabane, L., Dammak, L., Nikonenko, V.V., Bulvestre, G., and Auclair, B., J. Membr. Sci., 2007, vol. 298, p. 126.

    Article  CAS  Google Scholar 

  5. Jung, B., Moon, H.-M., and Baroña, G.N.B., J. Power Sources, 2011, vol. 196, p. 1880.

    Article  CAS  Google Scholar 

  6. Saarinen, V., Kreuer, K.D., Schuster, M., Merkle, R., and Maier, J., Solid State Ionics, 2007, vol. 178, p. 533.

    Article  CAS  Google Scholar 

  7. Chaabane, L., Dammak, L., Grande, D., Larchet, C., Huguet, P., Nikonenko, S.V., and Nikonenko, V.V., J. Membr. Sci., 2011, vol. 377, p. 54.

    Article  CAS  Google Scholar 

  8. Kritskaya, D.A., Abdrashitov, E.F., Bokun, V.Ch., Ponomarev, A.N., Chernyak, A.V., Vasil’ev, S.G., and Volkov, V.I., Pet. Chem.,, 2011, vol. 51, p. 644.

    Article  CAS  Google Scholar 

  9. Zawodzinski, Th.A., Jr., Neeman, M., Sillerud, L.O., and Gottesfeld, Sh., J. Phys. Chem., 1991, vol. 95, p. 6040.

    Article  CAS  Google Scholar 

  10. Zawodzinski, Th.A., Jr., Derouin, Ch., Radzinski, S., Sherman, R.J., Smith, V.T., Shimshon, Th.E., and Gottesfeld, Sh., J. Electrochem. Soc., 1993, vol. 140, p. 1041.

    Article  CAS  Google Scholar 

  11. Choi, C.-P., Jalani, N.H., and Datta, R., J. Electrochem. Soc., 2005, vol. 152, p. E123.

    Article  CAS  Google Scholar 

  12. Kritskaya, D.A., Chernyak, A.V., Vasil’ev, S.G., Abdrashitov, E.F., Bokun, V.Ch., Ponomarev, A.N., Dmitruk, A.S., and Volkov, V.I., Pet. Chem., 2013, vol. 53, p. 590.

    Article  CAS  Google Scholar 

  13. Hallberg, F., Vernersson, T., Pettersson, E.T., Dvinskikh, S.V., Lindbergh, G., and Furo, I., Electrochim. Acta, 2010, vol. 55, p. 3542.

    Article  CAS  Google Scholar 

  14. Abdrashitov, E.F., Bokun, V.Ch., Kritskaya, D.A., Ponomarev, A.N., Sanginov, E.A., and Dobrovol’sky, Yu.A., Russ. J. Electrochem., 2011, vol. 47, p. 387.

    Article  CAS  Google Scholar 

  15. Abdrashitov, E.F., Bokun, V.Ch., Kritskaya, D.A., Sanginov, E.A., Ponomarev, A.N., and Dobrovolsky, Y.A., Solid State Ionics, 2013, vol. 251, p. 9.

    Article  CAS  Google Scholar 

  16. Shaposhnik, V.A., Emel’yanov, D.E., and Drobysheva, I.V., Kolloidn. Zh., 1984, vol. 46, p. 820.

    CAS  Google Scholar 

  17. Chaabane, L., Bulvestre, G., Larchet, C., Nikonenko, V., Deslouis, C., and Takenouti, H., J. Membr. Sci., 2008, vol. 323, p. 167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kritskaya.

Additional information

Original Russian Text © V.Ch. Bokun, D.A. Kritskaya, E.F. Abdrashitov, A.N. Ponomarev, E.A. Sanginov, A.B. Yaroslavtsev, Yu.A. Dobrovol’skii, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 5, pp. 504–511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokun, V.C., Kritskaya, D.A., Abdrashitov, E.F. et al. Proton conductivity of perfluorinated and nanocomposite ion exchange membranes in aqueous and water-methanol solutions. Russ J Electrochem 51, 435–441 (2015). https://doi.org/10.1134/S1023193515050031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515050031

Keywords

Navigation