Skip to main content
Log in

Desorption of octanethiol from gold electrode surface during its electrochemical cleaning

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The potentialities of electrochemical method of removal of adsorbed octanethiol layer from gold electrode surface are considered. The dependence of a degree of gold macro- and microelectrode cleaning on the electrolyte composition, potential cycling range, and the number of cycles is studied. It is shown that the commonly used method of cleaning by multiple potential cycling in the perchloric acid solution in the potential range from 0 to 1400 mV (SCE) is not sufficiently efficient. Cycling in the water-ethanol solution of perchloric acid promotes the octanethiol desorption and leads to the complete regeneration of surface even after 6–8 cycles. This is evidenced by comparing with the voltammograms, which were obtained on pure Au surface in 4 mM potassium ferri-ferrocyanide and 0.1 M HClO4 solutions. A range of ethanol concentrations, which provides the highest degree of gold surface cleaning, is determined. The electrochemical method of cleaning by using water-ethanol solution of perchloric acid enables one to perform multiple electrode regeneration without destruction of thin gold layer (for example, in the quartz microbalance), which takes place in the case of chemical regeneration in the “piranha” solution based on sulfuric acid and hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M., Chem. Rev., 2005, vol. 105, p. 1103.

    Article  CAS  Google Scholar 

  2. Iost, R.M. and Crespilho, F.N., Biosens. Bioelectron., 2012, vol. 31, p. 1.

    Article  CAS  Google Scholar 

  3. Gooding, J.J. and Ciampi, S., Chem. Soc. Rev., 2011, vol. 40, p. 2704.

    Article  CAS  Google Scholar 

  4. Chaki, N.R. and Vijayamohanan, K., Biosens. Bioelectron., 2002, vol. 17, p. 1.

    Article  CAS  Google Scholar 

  5. Beulen, M.W.J., Kastenberg, M.I., van Veggel, F., and Reinboudt, D.N., Langmuir, 1998, vol. 14, p. 7463.

    Article  CAS  Google Scholar 

  6. Wnuk, T., Chem. Eng. News, 1990, vol. 68, p. 26.

    Article  Google Scholar 

  7. Johnson, B.N. and Mutharasan, R., J. Phys. Chem. C, 2013, vol. 117, no. 3, p. 1335.

    Article  CAS  Google Scholar 

  8. Carvalhal, R.F., Freire, R.S., and Kubota, L.T., Electroanalysis, 2005, vol. 17, p. 1251.

    Article  CAS  Google Scholar 

  9. Sauerbrey, G., Z. Phys., 1959, vol. 155, p. 206.

    Article  CAS  Google Scholar 

  10. Zelinskii, A.G. and Bek, R.Yu., Elektrokhimiya, 1985, vol. 21, p. 66.

    CAS  Google Scholar 

  11. Michri, A.A., Pshenichnikov, A.G., and Burshtein, R.Kh., Elektrokhimiya, 1972, vol. 8, p. 364.

    CAS  Google Scholar 

  12. Rogozhnikov, N.A. and Bek, R.Yu., Elektrokhimiya, 1987, vol. 23, p. 1440.

    CAS  Google Scholar 

  13. Yang, D.-F., Wilde, C.P., and Morin, M., Langmuir, 1996, vol. 12, p. 6570.

    Article  CAS  Google Scholar 

  14. Stolberg, L., Lipkowski, J., and Irish, D.E., J. Electroanal. Chem., 1990, vol. 296, p. 171.

    Article  CAS  Google Scholar 

  15. Mirsky, V.M., Trends Anal. Chem., 2002, vol. 21, p. 439.

    Article  CAS  Google Scholar 

  16. Vandler, D. and Kraus-Ophir, S., J.Solid State Electrochem., 2011, vol. 15, p. 1535.

    Article  Google Scholar 

  17. Byloos, M., Al-Maznai, H., and Morin, M., J. Phys. Chem. B, 1999, vol. 103, p. 6554.

    Article  CAS  Google Scholar 

  18. Yang, D.-F., Al-Maznai, H., and Morin, M., J. Phys. Chem. B, 1997, vol. 101, p. 1158.

    Article  CAS  Google Scholar 

  19. Wong, E.H.J., May, G.L., and Wilde, C.P., Electrochim. Acta, 2013, vol. 109, p. 67.

    Article  CAS  Google Scholar 

  20. Cai, J. and Baldelli, S., J. Phys. Chem. C, 2011, vol. 115, p. 19178.

    Article  CAS  Google Scholar 

  21. Dai, J., Li, Zh., Jin, J., Cheng, J., Kong, J., and Bi, Sh., J. Electroanal. Chem., 2008, vol. 648, p. 315.

    Article  Google Scholar 

  22. Ovchinnikova, S.N. and Medvedev, A.Zh., Abstracts of Papers of Int. Joined Conf.: V Konf. “Sovremennye metody v teoreticheskoi i eksperimental’noi elektrokhimii” (V Conf. “Modern Methods in Theoretical and Experimental Electrochemistry”) and IV Konf. “Elektrokhimicheskie i elektrolitno-plazmennye metody modifikatsii metallicheskikh poverkhnostei” (IV Conf. “Electrochemical and Electrolyte-Plasma Methods of Metal Surface Modification”), Ivanovo: Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences, 2013, p. 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Ovchinnikova.

Additional information

Original Russian Text © S.N. Ovchinnikova, A.Zh. Medvedev, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 4, pp. 339–346.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikova, S.N., Medvedev, A.Z. Desorption of octanethiol from gold electrode surface during its electrochemical cleaning. Russ J Electrochem 51, 287–293 (2015). https://doi.org/10.1134/S1023193515040084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515040084

Keywords

Navigation