Skip to main content

Advertisement

Log in

Quantitative structure-electrochemistry relationship for substituted benzenoids using Levenberg-Marquardt artificial neural network

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Quantitative structure-property relationship models correlating the half-wave potentials (E 1/2) of the benzenoids and its derivatives were developed using both linear and non-linear modelling approaches. Descriptors calculated from molecular structures alone were used to represent the E 1/2 of the benzenoids. A set of 36 compounds were selected and suitable sets of molecular descriptors were calculated. A genetic algorithm-partial least square (GA-PLS) method was used to select the most appropriate molecular descriptors whilst a linear, quantitative structure-property relationship model was developed; using the selected descriptors, a Levenberg-Marquardt artificial neural network (L-M ANN) was employed for the non-linear model development. The stability and prediction ability of models were validated using leave-group-out cross-validation, external test set and Y-randomization techniques. The described model does not parameters require experimental and potentially provides useful prediction for E 1/2 of new benzenoids derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Russ. J. Electrochem., 2005, vol. 41, p. 122.

    Article  CAS  Google Scholar 

  2. Kornhuber, J., Terfloth, L., Bleich, S., Wiltfang, G., and Rupprecht, R., Eur. J. Med. Chem., 2009, vol. 44, p. 2667.

    Article  CAS  Google Scholar 

  3. Tang, W.Z., and Wang, F., Chemosphere, 2010, vol. 78, p. 914.

    Article  CAS  Google Scholar 

  4. Yuan, S., Xiao, M., Zheng, G., Tian, M., and Lu, X., SAR QSAR Environ. Res., 2006, vol. 17, p. 473.

    Article  CAS  Google Scholar 

  5. Nesmerak, K., Nemec, I., Sticha, M., Waisser, K., and Palat, K., Electrochim. Acta, 2005, vol. 50, p. 1431.

    Article  CAS  Google Scholar 

  6. Tompe, P., Clementis, G., Petnehazy, I., Jaszay, Z.M., and Toke, L., Anal. Chim. Acta, 1995, vol. 305, p. 295.

    Article  Google Scholar 

  7. Nesmerak, K., Nemec, I., Sticha, M., Waisser, K., and Palat, K., Electrochim. Acta, 2005, vol. 50, p. 1431.

    Article  CAS  Google Scholar 

  8. Bergman, I., Trans. Faraday Soc., 1954, vol. 50, p. 829.

    Article  CAS  Google Scholar 

  9. Todeschini, R., Consonni, V., Mauri, A., and Pavan, M., DRAGON-Software for the Calculation of Molecular Descriptors; Version 3.0 for Windows, 2003.

    Google Scholar 

  10. Zhou, X., Li, Z., Dai, Z., and Zou, X., J. Mol. Graphics Modell., 2010, vol. 29, p. 188.

    Article  CAS  Google Scholar 

  11. Sarıpınar, E., Geçen, N., Şahin, K., and Yanmaz, E., Eur. J. Med. Chem., 2010, vol. 45, p. 4157.

    Article  Google Scholar 

  12. Singh, K.P., Ojha, P., Malik, A., and Jain, G., Chemom. Intell. Lab. Sys., 2009, vol. 99, p. 150.

    Article  CAS  Google Scholar 

  13. Parthiban, T., Ravi, R., and Kalaiselvi, N., Electrochimica Acta, 2007, vol. 53, p. 1877.

    Article  CAS  Google Scholar 

  14. Jalali-Heravi, M., Asadollahi-Baboli, M., and Shahbazikhah, P., Eur. J. Med. Chem., 2008, vol. 43, p. 548.

    Article  CAS  Google Scholar 

  15. Singh, K.P., Basant, N., Malik, A., and Jain, G., Anal. Chim. Acta, 2010, vol. 658, p. 1.

    Article  CAS  Google Scholar 

  16. Noorizadeh, H. and Farmany, A., Russ. J. Electrochem., 2014, in press.

    Google Scholar 

  17. Roy, K. and Roy, P.P., Eur. J. Med. Chem., 2009, vol. 44, p. 1941.

    Article  CAS  Google Scholar 

  18. Gupta, V.K., Khani, H., Ahmadi-Roudi, B., Mirakhorli, S., Fereyduni, E., and Agarwal, S., Talanta, 2011, vol. 83, p. 1014.

    Article  CAS  Google Scholar 

  19. Frapiccini, A.L., Gasaneo, G., Colavecchia, F.D., and Mitnik, D., J. Electron. Spectrosc. Relat. Phenom., 2007, vol. 161, p. 199.

    Article  CAS  Google Scholar 

  20. Chamjangali, A., Beglari, M., and Bagherian, G., J. Mol. Graphics Modell., 2007, vol. 26, p. 360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Farmany.

Additional information

Published in Russian in Elektrokhimiya, 2015, Vol. 51, No. 3, pp. 293–302.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorizadeh, H., Farmany, A. Quantitative structure-electrochemistry relationship for substituted benzenoids using Levenberg-Marquardt artificial neural network. Russ J Electrochem 51, 249–257 (2015). https://doi.org/10.1134/S102319351503009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351503009X

Keywords

Navigation