Skip to main content
Log in

Electrochemical behavior of α-MoO3 nanobelts as cathode material for lithium ion batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

α-MoO3 nanobelts were synthesized by simple hydrothermal method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Cyclic voltammogram (CV) and galvanostatic charge/discharge testing techniques were employed to evaluate electrochemical behaviors of α-MoO3 materials. Results showed that α-MoO3 nanobelts with about 80 nm in diameter and 5–12 μm in length were grown in the orthorhombic system. Electrochemical characterisation confirmed that in lithium ion insertion/extraction process, the first intercalation of lithium ion in α-MoO3 at about 2.8 V was irreversible, corresponding to Li x MoO3 (0 < x ≤ 0.25) and the parent MoO3 materials coexisting, the second lithium ion inter-calation was reversible at the potential range of 2.2–2.4 V followed by Li x MoO3 (0.25 < x ≤ 0.5), and below 1.0 V the mechanism of lithium ion storage changed from lithium ion intercalation reaction into lithium alloying reaction. The α-MoO3 nanobelts showed better electrochemical performance, 319 mA h g−1 initial discharge capacity, around 52% capacity retention after 20 cycles than that of α-MoO3 bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meqahed, S. and Scrosati, B., J. Power Sources, 1994, vol. 51, p. 79.

    Article  Google Scholar 

  2. Winter, M. and Brodd, J., Chem. Rev., 2004, vol. 104, p. 4245.

    Article  CAS  Google Scholar 

  3. Cui, Y.L., Sun Z., and Zhuang, Q.C., J. Inorg. Organomet. Polym., 2011, vol. 21, p. 893.

    Article  CAS  Google Scholar 

  4. Gao, B., Fan, H.Q., and Zhang, Q., J. Phys. Chem. Solids, 2012, vol. 73, p. 423.

    Article  CAS  Google Scholar 

  5. Gurkin, K., Northeastern University Boston: Massachusetts, 2010.

    Google Scholar 

  6. Riley, A., Lee, S.H., and Gedvilias, L., J. Power Sources, 2010, vol. 195, p. 588.

    Article  CAS  Google Scholar 

  7. Besenhard, J.O., Heydecke, J., and Fritz, H.P., Solid State Ionics, 1982, vol. 6, p. 215.

    Article  CAS  Google Scholar 

  8. Besenhard, J.O., Heydecke, J., and Wudy, E., Solid State Ionics, 1983, vol. 8, p. 61.

    Article  CAS  Google Scholar 

  9. Sun, Y., Wang, J., and Zhao, B., J. Mater. Chem., Ser. A, 2013, vol. 1, p. 4736.

    Article  CAS  Google Scholar 

  10. Leroux, F. and Nazar, L.F., Solid State Ionics, 2000, vol. 133, p. 37.

    Article  CAS  Google Scholar 

  11. Lee, S.H., Kim, Y.H., and Deshpande, R., Adv. Mater., 2008, vol. 20, p. 3627.

    Article  CAS  Google Scholar 

  12. Noerochim, L., Wang, J.Z., and Wexler, D., J. Power Sources, 2013, vol. 228, p. 198.

    Article  CAS  Google Scholar 

  13. Tang, W., Liu, L.L., and Zhu, Y.S., Energy Environ. Sci., 2012, vol. 5, p. 6909.

    Article  CAS  Google Scholar 

  14. Cui, P., Liang, Y.Y., and Sun, L., Chin. J. Inorg. Chem., 2012, vol. 28, p. 1861.

    CAS  Google Scholar 

  15. Riley, L.A., Lee, S.H., and Gedvilias, L., J. Power Sources, 2012, vol. 195, p. 588.

    Article  Google Scholar 

  16. Brezesinski, T., Wang, J., and Tolbert, S.H., Nat. Mater., 2012, vol. 9, p. 146.

    Article  Google Scholar 

  17. Xia, X., Nuli, Y.N., and Guo, Z.P., Chin. J. Appl. Chem., 1999, vol. 16, p. 66.

    CAS  Google Scholar 

  18. Julien, C. and Nazri, G.A., Solid State Ionics, 1994, vol. 68, p. 111.

    Article  CAS  Google Scholar 

  19. Spahr, M.E., Novak, P., and Haas, O., J. Power Sources, 1995, vol. 54, p. 346.

    Article  CAS  Google Scholar 

  20. Zakharova, G.S., Taschner, C., and Volkov, V.L., Solid State Sci., 2007, vol. 9, p. 1028.

    Article  CAS  Google Scholar 

  21. Lee, S.H., Kim, Y.H., and Deshpande, R., Adv. Mater., 2008, vol. 20, p. 3627.

    Article  CAS  Google Scholar 

  22. Feng, C.Q., Gao, H., and Zhang, C.F., Electrochim. Acta, 2013, vol. 93, p. 101.

    Article  CAS  Google Scholar 

  23. Mendoza-Sánchez, B. and Grant, P.S., Electrochim. Acta, 2013, vol. 98, p. 294.

    Article  Google Scholar 

  24. Mohan, V.M., Chen, W., and Murakami, K., Mater. Res. Bull., 2013. vol. 48, p. 603.

    Article  CAS  Google Scholar 

  25. Iriyama, Y., Abe, T., and Inaba, M., Solid State Ionics, 2000, vol. 35, p. 95.

    Article  Google Scholar 

  26. Tsumura, T. and Inagaki, M., Solid State Ionics, 1997, vol. 104, p. 183.

    Article  CAS  Google Scholar 

  27. Swiatowska-Mrowiecka, J., de Diesbach, S., and Maurice, V., J. Phys. Chem., Ser. C, 2008, vol. 112, p. 1050.

    Google Scholar 

  28. Bao, W.J., Zhuang, Q.C., and Xu, S.D., Ionics, 2013, vol. 19, p. 1005.

    Article  CAS  Google Scholar 

  29. Feng, C., Li, L., and Guo, Z., J. Alloys Compd., 2010, vol. 504, p. 457.

    Article  CAS  Google Scholar 

  30. Pringlea, J.M., Efthimiadisb, J.P., and Howletta, C., Polymer, 2004, vol. 45, p. 1447.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongli Cui or Quanchao Zhuang.

Additional information

Published in Russian in Elektrokhimiya, 2015, Vol. 51, No. 2, pp. 145–151.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Pu, Y., Hao, Y. et al. Electrochemical behavior of α-MoO3 nanobelts as cathode material for lithium ion batteries. Russ J Electrochem 51, 119–124 (2015). https://doi.org/10.1134/S1023193515020093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515020093

Keywords

Navigation