Skip to main content
Log in

Dependence of corrosion current on the composition of titanium-nickel alloy in NaCl solution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The corrosion current density and corrosion potentials of titanium-nickel alloys are determined as a function of a ratio between the alloy components in 0.5 M NaCl solution. For the alloy range from the alloy containing approximately 5 wt % nickel to TiNi intermetallic compound, the corrosion current of the alloys is determined predominantly by titanium, which exhibits a low corrosion rate (below 1 μA/cm2). A certain decrease in the corrosion current as compared with the corrosion current of titanium is observed with increasing content of nickel in the alloy. This is explained by an increase in the polarization of cathodic reaction. At a higher content of nickel, the corrosion behavior of the alloys is determined by this component; the corrosion current increases with increasing nickel content in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barison, S., Cattarin, S., Daolio, S., Musiani, M., and Tuissi, A., Electrochim. Acta, 2004, vol. 50, p. 11.

    Article  CAS  Google Scholar 

  2. Sedriks, A.J., Green, J.A.S., and Novak, D.L., Corrosion, 1972, vol. 28, p. 137.

    Article  CAS  Google Scholar 

  3. Green, J.A.S. and Latanision, R.M., Corrosion, 1973, vol. 29, p. 386.

    Article  CAS  Google Scholar 

  4. Sedriks, A.J., Green, J.A.S., and Novak, D.L., in Titanium Science and Technology, Jaffee, R.I. and Burte, H.M., Eds., New York: Plenum, 1973, vol. 4, p. 2431.

  5. Kazarin, V.I., Tomashov, N.D., Mikheev, V.S., and Goncharenko, B.A., Zashch. Met., 1976, vol. 12, p. 268.

    CAS  Google Scholar 

  6. Akimov, A.G., Paleolog, E.N., Fedotova, A.Z., Dagurov, V.G., Manskaya, V.D., Goncharenko, B.A., Mikheev, V.S., and Tomashov, N.D., Elektrokhimiya, 1979, vol. 15, p. 942.

    Google Scholar 

  7. Paleolog, E.N., Fedotova, A.Z., Derjagina, O.G., and Tomashov, N.D., J. Electrochem. Soc., 1978, vol. 125, p. 1410.

    Article  CAS  Google Scholar 

  8. Petit, J.A., Chatainier, G., Lafargue, P., and Dabosi, F., Electrochemical behavior of titanium-nickel alloys in sulphuric acid media, Proc. of the Fourth Int. Conf. on Titanium “Titanium’80. Science and Technology” (Kyoto, Japan, 1980), Kimura, H. and Izumi, O., Eds., Warrendale, Pa: Metallurgical Soc. of AIME, 1980, pp. 2659–2667.

    Google Scholar 

  9. Stepanova, T.P., Krasnoyarskii, V.V., Tomashov, N.D., and Druzhinina, I.P., Zashch. Met., 1978, vol. 14, p. 169.

    CAS  Google Scholar 

  10. Ustinskaya, T.N., Tomashov, N.D., and Lyubnin, E.N., Elektrokhimiya, 1987, vol. 23, p. 225.

    Google Scholar 

  11. Rondelli, G. and Vicentini, B., Biomaterials, 1999, vol. 20, p. 785.

    Article  CAS  Google Scholar 

  12. Rozenfel’d, I.L., Akimov, A.G., and Oshe, E.K., Dokl. Akad. Nauk SSSR, 1969, vol. 184, p. 1368.

    Google Scholar 

  13. Metikos-Hukovic, M., Katic, J., and Milosev, I., J. Solid State Electrochem., 2012, vol. 16, p. 2503.

    Article  CAS  Google Scholar 

  14. Chu, C.L., Wang, R.M., Hu, T., Yin, L.H., Pu, Y.P., Lin, P.H., Dong, Y.S., Guo, C., Chung, C.Y., Yeung, K.W.K., and Chu, P.K., J. Mater. Sci.: Mater. Med., 2009, vol. 20, p. 223.

    CAS  Google Scholar 

  15. Chenga, F.T., Shia, P., Pang, G.K.H., Wong, M.H., and Man, H.C., J. Alloys Compd., 2007, vol. 438, p. 238.

    Article  Google Scholar 

  16. Chan, C.-M., Trigwell, S., and Duerig, T., Surf. Interface Anal., 1990, vol. 15, p. 349.

    Article  CAS  Google Scholar 

  17. Figueira, N., Silva, T.M., Carmezim, M.J., and Fernandes, J.C.S., Electrochim. Acta, 2009, vol. 54, p. 921.

    Article  CAS  Google Scholar 

  18. Deryagina, O.G., Paleolog, E.N., Akimov, A.G., Dagurov, V.G., and Tomashov, N.D., Elektrokhimiya, 1980, vol. 16, p. 1828.

    CAS  Google Scholar 

  19. Tomashov, N.D., Altovsky, R.M., and Chernova, G.P., J. Electrochem. Soc., 1961, vol. 108, p. 113.

    Article  CAS  Google Scholar 

  20. Stern, M. and Wissenberg, H., J. Electrochem. Soc., 1959, vol. 106, p. 759.

    Article  CAS  Google Scholar 

  21. Cotton, J.B., Platinum Met. Rev., 1967, vol. 11, p. 50.

    CAS  Google Scholar 

  22. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Corros. Sci., 2011, vol. 53, p. D. 630.

    Article  Google Scholar 

  23. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (Phase Diagrams of Binary Metal Systems: Handbook), Lyakishev N.P., Ed., Moscow: Mashinostroenie, vol. 3, book 1, 1999, p. 656.

    Google Scholar 

  24. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Russ. J. Electrochem., 2014, vol. 50, p. 108.

    Article  CAS  Google Scholar 

  25. Stansbury, E.E. and Buchanan, R.A., Fundamentals of the Electrochemical Corrosion, Materials Park, Ohio: ASM International, 2000, ch. 6.

    Google Scholar 

  26. McCafferty, E., Introduction to Corrosion Science, New York: Springer, 2010, ch. 7.

    Book  Google Scholar 

  27. Mansfeld, F., The polarization resistance techniques for measuring corrosion currents, in: Advances in Corrosion Science and Technology, Fontana, M.G., Staehle, R.W., Eds., New York: Plenum, 1976, vol. 6, p. 163.

    Chapter  Google Scholar 

  28. Nishimura, R. and Kudo, K., Corros. Sci., 1982, vol. 22, p. 637.

    Article  CAS  Google Scholar 

  29. Spravochnik po elektrokhimii (Handbook on Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  30. Tan, L., Dodd, R.A., and Crone, W.C., Boimaterials, 2003, vol. 24, p. 3931.

    Article  CAS  Google Scholar 

  31. Ruiz, J.A., Rosales, I., Gonzalez-Rodriguez, J.G., and Uruchurtu, J., Int. J. Electrochem. Sci., 2010, vol. 5, p. 593.

    CAS  Google Scholar 

  32. Venugopalan, R., J. Biomed. Mater. Res., 1999, vol. 438, p. 829.

    Article  Google Scholar 

  33. Wong, M.H., Cheng, F.T., and Man, H.C., Mater. Lett., 2007, vol. 61, p. 3391.

    Article  CAS  Google Scholar 

  34. Garbacz, H., Pisarek, M., and Kurzydlowski, K.J., Biomol. Eng., 2007, vol. 24, p. 559.

    Article  CAS  Google Scholar 

  35. Alves, V.A., Reis, R.Q., Santos, I.C.B., Souza, D.G., Goncalves, T.De F., and Pereira-da-Silva, M.A., Corros. Sci., 2009, vol. 51, p. 2473.

    Article  CAS  Google Scholar 

  36. Glukhov, L.M., Bukhan’ko, N.G., and Davydov, A.D., Russ. J. Electrochem., 2004, vol. 40, p. 332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Davydov.

Additional information

Original Russian Text © K.V. Rybalka, L.A. Beketaeva, N.G. Bukhan’ko, A.D. Davydov, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 12, pp. 1284–1291.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybalka, K.V., Beketaeva, L.A., Bukhan’ko, N.G. et al. Dependence of corrosion current on the composition of titanium-nickel alloy in NaCl solution. Russ J Electrochem 50, 1149–1156 (2014). https://doi.org/10.1134/S1023193514120076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514120076

Keywords

Navigation