Skip to main content
Log in

Electrochemical measurement of the antidiabetic potential of medicinal plants using multi-walled carbon nanotubes paste electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A sensor for the determination of antidiabetic potential of medicinal plants based on the inhibition of the α-glucosidase (AG) activity is developed using multi-walled carbon nanotubes (MWCNTs) paste electrode. The fabricated electrode was used to measure the amount of para-nitrophenol released through the hydrolysis of para-nitrophenyl-α-D-glucopyranoside (PNPG) catalyzed by AG enzyme. The enzymatic reaction is inhibited by bioactive compounds in medicinal plant extracts, which indicates the antidiabetic potential of these extract. The inhibition of the enzymatic reaction by medicinal plant extracts and Acarbose was studied by cyclic voltammetric method using the developed electrode in phosphate buffer at pH 6.8. The results show that the inhibition is higher in the presence of Tebengau (Ehretia laevis) than that in the presence of Acarbose, Cemumar (Micromelum pubescens) and Kedondong (Spondias dulcis). A good correlation was obtained between the spectrophotometric and the cyclic voltammetric methods for the measurement of the inhibition achieved with the medicinal plant extracts. Therefore, the fabricated MWCNTs paste electrode is useful for the measurement of the antidiabetic potential of medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization, 2011.

  2. Buse, J.B., Henry, R.R., Han, J., Kim, D.D., Fineman, M.S., and Baron, A.D., Diabetes Care, 2004, vol. 27, p. 2628.

    Article  CAS  Google Scholar 

  3. Madsbad, S., Eu. J. Intern. Med., 2012, vol. 23, p. 132.

    Article  CAS  Google Scholar 

  4. Phan, M.A.T., Wang, J., Tang. J., Lee, Y.Z., and Ng, K., LWT—Food Scien. Technol., 2013, vol. 53, p. 492.

    CAS  Google Scholar 

  5. Yu, Z., Yin, Y., Zhao, W., Yu, Y., Liu, B., Liu, J., and Chen, F., Food Chem., 2011, vol. 129, p. 1376.

    Article  CAS  Google Scholar 

  6. Patil, A., Nirmal, S., Pattan, S., Tambe, V., and Tare, M., Phytopharmacology, 2012, vol. 2, p. 46.

    Google Scholar 

  7. Han, C.J., Hussin, A.H., and Ismail, S., Trop. Biomed., 2008, vol. 25, p. 9.

    Google Scholar 

  8. Kim, J., Hyun, T.K., and Kim, M., Food Chem., 2011, vol. 124, p. 1647.

    Article  CAS  Google Scholar 

  9. Vinholes, J., Grosso, C, Andrade, P.B., Gil.-Izquierdo, A., Valentao, P., Pinho, P.G., and Ferreres, F., Food Chem., 2011, vol. 129, p. 454.

    Article  CAS  Google Scholar 

  10. Nain, P., Saini, V., Sharma, S., and Nain, J., J. Ethnopharmacol., 2012, vol. 142, p. 65.

    Article  CAS  Google Scholar 

  11. Patel, D.K., Prasad, S.K., Kumar, R., and Hemalatha, S., Asian Pac. J. Trop. Biomed., 2012, p. 320.

    Google Scholar 

  12. He, H., Li, X., Chen, X., Ye, X., Huang, J., Jin, Y., Li, P., Deng, Y., Jin, Q., Shi, Q., and Shu, H., J. Ethnopharmacol., 2011, vol. 137, p. 1135.

    Article  Google Scholar 

  13. Kumar, V.G., Gokavarapu, S.D., Rajeswari, A., Dhas, T.S., Karthick, V., Kapadia, Z., Shrestha, T., Barathy, I.A., Roy, A., and Sinha, S., Colloids Surf. B, 2011, vol. 87, p. 159.

    Article  CAS  Google Scholar 

  14. Goldberg, R.B., Rosenson, R.S., Hernandez-Triana, E., Misir, S., and Jones, M.R., J. Clin. Lipidol., 2012, vol. 6, p. 318.

    Article  Google Scholar 

  15. Shivanna, N., Naika, M., Khanum, F., and Kaul, V.K., J. Diabetes Complications., 2013, vol. 27, p. 103.

    Article  Google Scholar 

  16. Kumar, S., Vasudeva, N., and Sharma, S., Cardiovasc. Diabeto., 2012, vol. 95, p. 1.

    Google Scholar 

  17. El-ries, M.A.N., Mohamed, G.G., and Attia, A.K., Yakugaku zasshi, 2008, vol. 128, p. 171.

    Article  CAS  Google Scholar 

  18. Timur, S. and Anik, U., Anal. Chim. Acta, 2007, vol. 598, p. 143.

    Article  CAS  Google Scholar 

  19. Silva, F.D.A.D.S., Lopes, C.B., Kubota, L.T., Lima, P.R., and Goulart, M.O.F., Sens. Actuators B, 2012, vol. 168, p. 289.

    Article  CAS  Google Scholar 

  20. Deng, P., Fei, J., and Feng, Y., Sens. Actuators B, 2010, vol. 148, p. 214.

    Article  CAS  Google Scholar 

  21. Jeykumari, D.R.S., Ramaprabhu, S., and Narayanan, S.S., Carbon, 2007, vol. 45, p. 1340.

    Article  CAS  Google Scholar 

  22. Sanghavi, B.J., Sitaula, S., Griep, M.H., Kama, S.P., Ali, M.F., and Swami, N.S., Anal. Chem., 2013, vol. 85, p. 8158.

    Article  CAS  Google Scholar 

  23. Sanghavi, B.J. and Srivastava, A.K., Analyst, 2013, vol. 138, p. 1395.

    Article  CAS  Google Scholar 

  24. Sanghavi, B.J. and Srivastava, A.K., Electrochim. Acta, 2010, vol. 55, p. 8638.

    Article  CAS  Google Scholar 

  25. Sanghavi, B.J., Mobin, S.M., Mathur, P., Lahiri, G.K., and Srivastava, A.K., Biosens. Bioelectron., 2013, vol. 39, p. 124.

    Article  CAS  Google Scholar 

  26. Svancara, I., Vytras, K., Kalcher, K., Walcarius, A., and Wang, J., Electroanal., 2009, vol. 21, p. 7.

    Article  CAS  Google Scholar 

  27. Giao, M.S., Leitao, I., Pereira, A., Borges, A.B., Guedes, C.J., Fernandes, J.C., Belo, L., Santos-Silva, A., Hogg, T.A., Pintado, M.E., and Malcata, F.X., Food Control, 2010, vol. 21, p. 633.

    Article  CAS  Google Scholar 

  28. Gomez, J.M., Romero, M.D., and Fernandez, T.M., Catal. Lett., 2005, vol. 101, p. 3.

    Article  Google Scholar 

  29. Gadhari, N.S., Sanghavi, B.J., and Srivastava, A.K., Anal. Chim. Acta, 2011, vol. 703, p. 31.

    Article  CAS  Google Scholar 

  30. Gao, H., Duan, Y., Xi, M., and Sun, W., Microchim. Acta, 2011, vol., 172, p. 57.

    Article  CAS  Google Scholar 

  31. Du, D., Wang, M., Cai, J., Qin, Y., and Zhang, A., Sens. Actuators B, 2010, vol. 143, p. 524.

    Article  CAS  Google Scholar 

  32. Jao, C., Huang, S., and Hsu, K., BioMedicine, 2012, vol. 2, p. 130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohiuddin.

Additional information

Published in Russian in Elektrokhimiya

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohiuddin, M., Arbain, D., Shafiqul Islam, A.K.M. et al. Electrochemical measurement of the antidiabetic potential of medicinal plants using multi-walled carbon nanotubes paste electrode. Russ J Electrochem 51, 368–375 (2015). https://doi.org/10.1134/S1023193514120027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514120027

Keywords

Navigation