Skip to main content
Log in

Empirical formula for the concentration dependence of the conductivity of organic electrolytes for lithium power sources in the vicinity of a maximum

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

To optimize the compositions of liquid organic electrolytes for lithium power sources, it is useful to have the dependence of the conductivity on the lithium salt concentration in a convenient analytical form. An empirical formula was suggested on the basis of the modified Kohlrausch equation for the concentration dependence of the conductivity of organic electrolytes in the vicinity of a maximum. The accuracy of this equation was checked on solutions of LiBF4 in propylene carbonate; LiClO4 in ethylene carbonate; and LiPF6 in ethylene carbonate/diethyl carbonate (1: 1), ethylene carbonate/ethylmethyl carbonate (1: 1), and ethylene carbonate/methyl acetate (1: 1) at different temperatures. The calculated data are in good agreement with experiment for all the systems. The new empirical formula allows the determination of the maximum conductivity of organic electrolytes based on a few points with good accuracy, which is very important in choosing the electrolyte salt concentration in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huggins, R.A., Advanced Batteries. Materials Science Aspects, New York: Springer Science + Business Media, LLC, 2009.

    Google Scholar 

  2. Lithium-Ion Batteries: Science and Technologies, Masaki, Y., Brodd, R.J., and Kozawa, A.N., Eds., New York: Springer Science + Business Media, LLC, 2009.

    Google Scholar 

  3. Parka, M., Zhanga, X., Chunga, M., Lessa, G.B., and Sastry, A.M., J. Power Sources, 2010, vol. 195, p. 7904.

    Article  Google Scholar 

  4. Kulova, T.L., Russ. J. Electrochem., 2013, vol. 49, p. 1.

    Article  CAS  Google Scholar 

  5. Xu, K., Chem. Rev., 2004, vol. 104, p. 4303.

    Article  CAS  Google Scholar 

  6. Perdew, P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  Google Scholar 

  7. Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.

    Article  CAS  Google Scholar 

  8. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2006.

    Google Scholar 

  9. Chandra, A., Biswas, R., and Bagchi, B., J. Am. Chem. Soc., 1999, vol. 121, p. 4082.

    Article  CAS  Google Scholar 

  10. Pu, W., He, X., Lu, J., Jiang, C., and Wan, C., J. Chem. Phys., 2005, vol. 123, p. 231105.

    Article  Google Scholar 

  11. Fialkov, Yu.Ya. and Suprunenko, A.A., Ukr. Khim. Zh., 1975, vol. 41, p. 1214.

    CAS  Google Scholar 

  12. Wolynes, P.G., Ann. Rev. Phys. Chem., 1980, vol. 31, p. 345.

    Article  CAS  Google Scholar 

  13. Wolnes, P.G., J. Chem. Phys., 1978, vol. 68, p. 473.

    Article  Google Scholar 

  14. Yarmolenko, O.V., Khatmullina, K.G., Tulibaeva, G.Z., Bogdanova, L.M., and Shestakov, A.F., J. Solid State Electrochem., 2012, vol. 16, p. 3371.

    Article  CAS  Google Scholar 

  15. Masia, M., Probst, M., and Rey, R., J. Phys. Chem. B, 2004, vol. 108, p. 2016.

    Article  CAS  Google Scholar 

  16. Bhatt, M.D., Cho, M., and Cho, K., Appl. Surf. Sci., 2010, vol. 257, p. 1463.

    Article  CAS  Google Scholar 

  17. Bhatt, M.D., Cho, M., and Cho, K., Modell. Simul. Mater. Sci. Eng., 2012, vol. 20, p. 065004.

    Article  Google Scholar 

  18. Ganesh, P., Jiang, D., and Kent, R.P.C., J. Phys. Chem. B, 2011, vol. 115, p. 3085.

    Article  CAS  Google Scholar 

  19. Wang, Z., Huang, B.Y., Xue, R.J., Chen, L.Q., and Huang, X.J., J. Electrochem. Soc., 1998, vol. 145, p. 3346.

    Article  CAS  Google Scholar 

  20. Bockris, J.O’M. and Reddy, A.K.N., Modern Electrochemistry, New York: Kluwer, 2002.

    Google Scholar 

  21. Chagnes, A., Carre, B., Willmann, P., and Lemordant, D., J. Power Sources, 2002, vol. 109, p. 203.

    Article  CAS  Google Scholar 

  22. Chagnes, A., Carre, B., Willmann, P., and Lemordant, D., Electrochim. Acta, 2001, vol. 46, p. 1783.

    Article  CAS  Google Scholar 

  23. Scorcelletti, V.V., Teoreticheskaya elektrokhimiya (Theoretical Electrochemistry), Leningrad: GKhI (Gos. Izd. Khim. Lit.), 1974.

    Google Scholar 

  24. Izmailov, N.A., Elektrokhimiya rastvorov (Solution Electrochemistry), Moscow: Khimiya, 1976.

    Google Scholar 

  25. Kutepov, A.M., Eksperimental’nye metody khimii rastvorov (Experimental Methods in Solution Chemistry), Moscow: Nauka, 1997.

    Google Scholar 

  26. Kuratani, K., Uemura, N., Takeshita, H.T., and Kiyobayashi, T., J. Power Sources, 2013, vol. 223, p. 175.

    Article  CAS  Google Scholar 

  27. Kolosnitsyn, V.S., Sheina, L.V., and Mochalov, S.E., Russ. J. Electrochem., 2008, vol. 44, p. 575.

    Article  CAS  Google Scholar 

  28. Harned, H.S. and Owen, B.B., The Physical Chemistry of Electrolytic Solutions, New York: Reinhold, 1958.

    Google Scholar 

  29. Yurina, E.S., Varlamova, T.M., and Ovsyannikov, V.M., Elektrokhim. Energ., 2003, vol. 3, p. 75.

    Google Scholar 

  30. Linden, D. and Reddy, T.B., Handbook of Batteries, New York: McGraw-Hill, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Yarmolenko.

Additional information

Original Russian Text © A.F. Shestakov, A.V. Yudina, G.Z. Tulibaeva, K.G. Khatmullina, T.V. Dorofeeva, O.V. Yarmolenko, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 11, pp. 1143–1151.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakov, A.F., Yudina, A.V., Tulibaeva, G.Z. et al. Empirical formula for the concentration dependence of the conductivity of organic electrolytes for lithium power sources in the vicinity of a maximum. Russ J Electrochem 50, 1027–1035 (2014). https://doi.org/10.1134/S102319351411010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351411010X

Keywords

Navigation