Skip to main content
Log in

The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity

  • Short Communications
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Simple analytical expression is derived for the changes in the ion solvation energy W NE upon its transfer to the center of water cavity with radius R Cav, surrounded by protein substance with dielectric constant ɛp. In the derivation, nonlocal-electrostatic Poisson equation for the water cavity was solved by using Hildebrandt method called in literature “New Formulation of Nonlocal Electrostatics.” It was shown that for potassium channel with the most open conformation KcsA, at R Cav = 1.6 nm and the water correlation length Λ = 0.8 nm, the energy W NE is by 1.25 k B T less that the resolvation energy calculated by the classical theory with the cavity’s dielectric constant ɛCav = 78.5. Therefore, the nonlocal-electrostatic effects in the water cavity of the potassium channel facilitate K+ transfer over the potential barrier in the channel’s cavity. The lowering of the cavity radius results in the K+ sucking up into the channel cavity; the effect is missed in the classical electrostatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hille, B., Ion Channels of Excitable Membrane, Sunderland: Sinauer, 2001, p. 3.

    Google Scholar 

  2. Vorotyntsev, M.A. and Kornyshev, A.A., Elektrostatika sred s prostranstvennoi dispersiei (Electrostatics in Media with Spatial Dispersion), Moscow: Nauka, 1993.

    Google Scholar 

  3. Cuello, L.G., Jogini, V., Cortes, D.M., and Perozo, E., Nature, 2010, vol. 466, p. 203.

    Article  CAS  Google Scholar 

  4. Yaroshchuk, A.E., Adv. Colloid Interface Sci., 2000, vol. 85, pp. 193–230.

    Article  CAS  Google Scholar 

  5. Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., and Mackinnon R., Science, 1998, vol. 280, p. 69.

    Article  CAS  Google Scholar 

  6. Roux, B. and Mackinnon R., Science, 1999, vol. 285, p. 100.

    Article  CAS  Google Scholar 

  7. Kariev, A.M. and Green, M.E., J. Phys. Chem. B, vol. 112, p. 1293.

  8. Jensen, M.O., Borhani, D.W., Lindorff-Larsen, K., Maragakis, P., Jogini, V., Eastwood, M.P., Dror, R.O., and Show, D.E., Proc. Natl. Acad. Sci. USA, 2010, vol. 107, p. 5833.

    Article  CAS  Google Scholar 

  9. Kornyshev, A.A. and Volkov, A.G., J. Electroanal. Chem., 1984, vol. 180, p. 363.

    Article  CAS  Google Scholar 

  10. Kornyshev, A.A., Tsitsuashvili, G.I., and Yaroshchuk, A.E., Elektrokhimiya, 1989, vol. 25, p. 1027.

    CAS  Google Scholar 

  11. Hildebrandt, A., Blossey, R., Rjasanow, S., Kohlbacher, O., and Lenhof, H.-P., Phys. Rev. Lett., 2004, vol. 93, pp. 108104–1.

    Article  CAS  Google Scholar 

  12. Levich, V.G., Kurs teoreticheskoi fiziki (The Course of Theoretical Physics), Moscow: Nauka, 1969, vol. 1.

  13. Bardhan, J.P., J. Chem. Phys., 2011, vol. 135, pp. 104113-1.

    Google Scholar 

  14. Ebbinghaus, S., Kim, S.J., Heyden, M., Yu, X., Heugen, U., Gruebele, M., Leitner, D.M., and Havenith, M., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 52, p. 20749.

    Article  CAS  Google Scholar 

  15. Warshel, A., Sharma, P.K., Kato, M., and Parson, W.W., Biochim. Biophys. Acta, 2006, vol. 1764, p. 1647.

    Article  CAS  Google Scholar 

  16. Jung, Y.W., Lu, B., and Mascagni, M., J. Chem. Phys., 2009, vol. 131, p. 215101.

    Article  Google Scholar 

  17. Domene, C., Vemparala, S., Furini, S., Sharp, K., and Klein, M.L., J. Am. Chem. Soc., 2008, vol. 130, p. 3389.

    Article  CAS  Google Scholar 

  18. Kornyshev, A.A. and Sutmann, G., J. Chem. Phys., 1996, vol. 104, p. 1524.

    Article  CAS  Google Scholar 

  19. Bopp, P.A., Kornyshev, A.A., and Sutmann, G., J. Chem. Phys., 1998, vol. 109, p. 1939.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Rubashkin.

Additional information

Original Russian Text © A.A. Rubashkin, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 11, pp. 1212–1217.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubashkin, A.A. The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity. Russ J Electrochem 50, 1090–1094 (2014). https://doi.org/10.1134/S1023193514110093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514110093

Keywords

Navigation