Skip to main content
Log in

The effect of the solution flow rate on the final mass of metals deposited into a porous electrode at individual and joint deposition. Frontal delivery of solution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Calculations in terms of the model of metal codeposition into a porous electrode (PE) and experimental measurements are used for studying how the flow rate m v and the volume of circulating solution at its frontal delivery affect the final mass of the cathodic deposit and its spatial distribution. For both individual and joint deposition of metals, the correlation between the final mass of the cathodic deposit m f and the uniformity of its distribution in PE is demonstrated: the more uniform the deposit distribution the higher its final mass. Due to peculiarities of the frontal delivery (the fixed position of the maximums of polarization and metal concentration and the same direction of their shift within the PE), the dependence of the final deposit mass on the volume flow rate demonstrates a very flat maximum shifted to sufficiently high m v. The increase in cathodic polarization and the transition to circulation with a small solution volume lead to the analogous shift. As a result, for the frontal delivery, the region of high flow rates turns out to be relatively more advantageous for the metal deposition into PE. For codeposition of silver and copper from their alkaline thiosulfate solution at the frontal solution delivery, the qualitative agreement between experimental and calculated m f = f(m v) dependences is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bek, R.Yu., Vozdeistvie gal’vanicheskikh proizvodstv na okruzhayushchuyu sredu i sposoby snizheniya nanosimogo ushcherba (The Effect of Galvanic Industry on the Environment and the Methods of Reducing the Damage), Novosibirsk: GPNTB SO RAN, 1991.

    Google Scholar 

  2. You, D.J., Zhang, H., and Chen, J., J. Electroanal. Chem., 2009, vol. 625, p. 165.

    Article  CAS  Google Scholar 

  3. Slaiman, Q.J.M., Najim, S.T., and Sadeq, A.A., J. Engineering, 2012, vol. 18, p. 485.

    Google Scholar 

  4. Brandon, N.P., Kelsall, G.H., Muller, T., Olijve, R., Schmidt, M., and Yin, Q., Energy and Electrochemical Processes for a Cleaner Environment. The Electrochemical Society Proceedings Series, Pennington; New York, 2001.

    Google Scholar 

  5. Pilone, D. and Kelsall, G.H., J. Electrochem. Soc., 2006, vol. 153, p. D85.

    Article  CAS  Google Scholar 

  6. Maslii, A.I., Poddubnyi, N.P., and Medvedev, A.Zh., Russ. J. Electrochem., 2011, vol. 47, p. 1016.

    Article  CAS  Google Scholar 

  7. Masliy, A.I. and Poddubny, N.P., in Metal Electrodeposition, Nunez, M., Ed., New York: Nova Sci. Publ., 2005, Chapter 4, pp. 99–128.

  8. Maslii, A.I., Poddubnyi, N.P., and Medvedev, A.Zh., Russ. J. Electrochem., 2005, vol. 41, p. 294.

    Article  CAS  Google Scholar 

  9. Maslii, A.I., Poddubnyi, N.P., and Medvedev, A.Zh., Russ. J. Electrochem., 2010, vol. 46, p. 411.

    Article  CAS  Google Scholar 

  10. Masliy, A.I., Poddubny, N.P., Medvedev, A.Zh., Belobaba, A.G., and Bokhonov, B.B., J. Electroanal. Chem., 2012, vol. 664, p. 126.

    Article  CAS  Google Scholar 

  11. Bek, R.Yu., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1977, no. 4(6), p. 11.

    Google Scholar 

  12. Bek, R.Yu. and Zamyatin, A.P., Elektrokhimiya, 1978, vol. 14, p. 1196.

    CAS  Google Scholar 

  13. Bek, R.Yu., Sib. Khim. Zh., 1993, no. 3, p. 85.

    Google Scholar 

  14. Shamal, D., Van Erkel, J., and Van Duin, P.J., J. Appl. Electrochem., 1986, vol. 16, p. 422.

    Article  Google Scholar 

  15. Carta, R., Palmas, S., Polcaro, A.M., and Tola, G., J. Appl. Electrochem., 1991, vol. 21, p. 793.

    Article  CAS  Google Scholar 

  16. Maslii, A.I., Medvedev, A.Zh., and Poddubnyi, N.P., Russ. J. Electrochem., 2006, vol. 42, p. 157.

    Article  CAS  Google Scholar 

  17. Frumkin, A.N., Zh. Prikl. Khim., 1949, vol. 23, p. 1477.

    CAS  Google Scholar 

  18. Maslii, A.I., Medvedev, A.Zh., and Poddubnyi, N.P., Russ. J. Electrochem., 2005, vol. 41, p. 1191.

    Article  CAS  Google Scholar 

  19. Varentsov, V.K., Zherebilov, A.F., and Malei, M.D., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1984, no. 17(6), p. 120.

    Google Scholar 

  20. Trainham, J.A. and Newman, J., J. Appl. Electrochem., 1997, vol. 7, p. 287.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Maslii.

Additional information

Original Russian Text © A.I. Maslii, N.P. Poddubnyi, A.Zh. Medvedev, O.V. Karunina, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 10, pp. 1011–1020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslii, A.I., Poddubnyi, N.P., Medvedev, A.Z. et al. The effect of the solution flow rate on the final mass of metals deposited into a porous electrode at individual and joint deposition. Frontal delivery of solution. Russ J Electrochem 50, 909–917 (2014). https://doi.org/10.1134/S1023193514100061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514100061

Keywords

Navigation