Skip to main content
Log in

CO2/H2S corrosion behavior of tubular steel SM 80SS in Cl-containing solution in the absence or presence of Ca2+ and Mg2+

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

CO2/H2S corrosion behavior of tubular steel SM 80SS have been investigated utilizing electrochemical measurement technology, weight loss test, scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that temperature increased the corrosion rate and changed the corrosion mechanism of tubular steel SM 80SS. Cl quickened the anodic dissolution and increased the corrosion rate of tubular steel SM 80SS. Furthermore, the addition of Ca2+ and Mg2+ resulted in the corrosion products changing from crystalline FeCO3 to amorphous Fe(Ca,Mg)(CO3)2 and serious corrosion under scale of tubular steel SM 80SS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, B., Hu, R.G., and Ye, C.Q., Electrochim. Acta, 2010, vol. 55, p. 6542.

    Article  CAS  Google Scholar 

  2. Zhao, G.X., Li, J.P., and Hao, S.M., J. Iron Steel Res. Int., 2005, vol. 12, p. 38.

    CAS  Google Scholar 

  3. Rajappa, S., Zhang, R., and Gopal, M., Corrosion/98, Houston, TX: NACE International, 1998, paper no. 026.

    Google Scholar 

  4. Guo, X.P. and Tomoe, Y., Corros. Sci., 1999, vol. 41, p. 1391.

    Article  CAS  Google Scholar 

  5. Heuer, J.K. and Stubbins, J.F., Corros. Sci., 1999, vol. 41, p. 1231.

    Article  CAS  Google Scholar 

  6. Eriksrud, E. and Søntvedt, T., Advanced in CO 2 Corrosion, Houston, TX: NACE International, 1984, p. 20.

    Google Scholar 

  7. Schmitt, G., Advanced in CO 2 Corrosion, Houston, TX: NACE International, 1984, p. 12.

    Google Scholar 

  8. Jiang, X., Zheng, Y.G., and Qu, D.R., Corros. Sci., 2006, vol. 48, p. 3091.

    Article  CAS  Google Scholar 

  9. Tang, J.W., Shao, Y.W., and Guo, J.B., Corros. Sci., 2010, vol. 52, p. 2050.

    Article  CAS  Google Scholar 

  10. Bonis, M.R., Girgis, M., and Goerz, K., Corrosion/2006, Houston, TX: NACE International, 2006, paper no. 06122.

    Google Scholar 

  11. Copson, H.R., Corrosion, 1951, vol. 7, p. 123.

    Article  CAS  Google Scholar 

  12. Meyer, F.H., Riggs, O.L., and McGlasson, R.L., Corrosion, 1958, vol. 14, p. 109.

    Google Scholar 

  13. Sardisco, J.B. and Pitts, R.E., Corrosion, 1965, vol. 21, p. 245.

    Article  CAS  Google Scholar 

  14. Sardisco, J.B. and Pitts, R.E., Corrosion, 1965, vol. 21, p. 350.

    Article  CAS  Google Scholar 

  15. Yin, Z.F., Zhao, W.Z., and Bai, Z.Q., Electrochim. Acta, 2008, vol. 53, p. 3690.

    Article  CAS  Google Scholar 

  16. Yin, Z.F., Yan, M.L., and Bai, Z.Q., Electrochim. Acta, 2008, vol. 53, p. 6285.

    Article  CAS  Google Scholar 

  17. Choi, Y.S., Nešić, S., and Ling, S., Electrochim. Acta, 2011, vol. 56, p. 1752.

    Article  CAS  Google Scholar 

  18. Tromans, D. and Frederick, L., Corrosion, 1984, vol. 40, p. 633.

    Article  CAS  Google Scholar 

  19. Schmitt, G. and Rothman, B., Mater. Corros., 1978, vol. 29, p. 237.

    Article  CAS  Google Scholar 

  20. De Waard, C. and Lozt, U., Corrosion/93, Houston, TX: NACE International, 1993, paper no. 69.

    Google Scholar 

  21. Chin, R.J. and Nobe, K., J. Electrochem. Soc., 1972, vol. 119, p. 1457.

    Article  CAS  Google Scholar 

  22. Gray, L.G.S., Anderson, B.G., and Danysh, M.J., Corrosion/90, Houston, TX: NACE International, 1990, paper no. 40.

    Google Scholar 

  23. Veloz, M.A. and González, I., Electrochim. Acta, 2002, vol. 48, p. 135.

    Article  CAS  Google Scholar 

  24. Zhang, G.A., Lu, M.X., and Wu, Y.S., Chin. J. Mater. Res., 2005, vol. 19, p. 537.

    CAS  Google Scholar 

  25. Chen, C.F., Lu, M.X., and Zhao, G.X., Acta Metall. Sinica, 2003, vol. 39, p. 848.

    CAS  Google Scholar 

  26. Zhao, G.X., Lu, X.H., and Xiang, J.M., J. Iron Steel Res. Int., 2009, vol. 16, p. 89.

    Article  CAS  Google Scholar 

  27. Zhu, S.D., Bai, Z.Q., and Liu, H., Chin. J. Corros. Prot., 2008, vol. 29, p. 724.

    CAS  Google Scholar 

  28. Ding, C., Gao, K.W., and Chen, C.F., Int. J. Min. Met. Mater., 2009, vol. 16, p. 661.

    CAS  Google Scholar 

  29. Wu, S.L., Cui, Z.D., and He, F., Mater. Lett., 2004, vol. 58, p. 1076.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Zhu.

Additional information

Published in Russian in Elektrokhimiya, 2014, Vol. 50, No. 9, pp. 932–939.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.L., Zhu, S.D., Yin, Z.F. et al. CO2/H2S corrosion behavior of tubular steel SM 80SS in Cl-containing solution in the absence or presence of Ca2+ and Mg2+ . Russ J Electrochem 50, 838–845 (2014). https://doi.org/10.1134/S1023193514090067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514090067

Keywords

Navigation