Skip to main content
Log in

Rapid diagnostics of characteristics and stability of fuel cells with proton-conducting electrolyte

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Processes underlying the degrading of membrane-electrode assemblies of hydrogen-air fuel cells with Nafion 212 and MF-4SK membranes under the conditions of their accelerated stress testing and long-term life tests are analyzed. The cathode platinum catalyst corrosion was shown to be the main cause of the degrading of the fuel cell’s kinetically controlled current-voltage characteristics; the corrosion is accompanied by the platinum nanoparticles’ growth and the platinum ion partial transfer into the membrane. The overvoltage components of the membrane-electrode assembly and their changing during accelerated stress testing are determined. The voltage decrease at currents >0.5 A/cm2 is shown to be mainly caused by the transport and ohmic resistance growth. The transport resistance components are calculated; the dependence of the cathode active layer resistance on the platinum catalyst surface area is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The fuel cell Industry Review. 2012.

  2. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima K., and Iwashita N., Chem. Rev., 2007, vol. 107, p. 3904.

    Article  CAS  Google Scholar 

  3. Ferreira-Aparicio, P., Gallardo-Lopez, B., Chaparro, A.M., and Daza, L., J. Power Sources, 2011, vol. 196, p. 4242.

    Article  CAS  Google Scholar 

  4. Schiraldi, D.A., Savant, D., and Zhou, C., ECS Trans., 2010, vol. 33, p. 883.

    Article  CAS  Google Scholar 

  5. Parry, V., Berthome, G., Joud, J.-C., Lemaire, O., and Franco, A.A., J. Power Sources, 2011, vol. 196, p. 2530.

    Article  CAS  Google Scholar 

  6. Jomori, S., Nonoyama, N., and Yoshiba, T., J. Power Sources, 2012, vol. 215, p. 18.

    Article  CAS  Google Scholar 

  7. Ohma, A., Mashio, T., Sato, K., Iden, H., Ono, Y., Sakai, K., Akizuki, K., Takaichi, S., and Shinohara, K., Electrochim. Acta, 2011, vol. 56, p. 10832.

    Article  CAS  Google Scholar 

  8. Yuan, X.-Z., Li, H., Zhang, S., Martin, J., and Wang, H., J. Power Sources, 2011, vol. 196, p. 9107.

    Article  CAS  Google Scholar 

  9. Yu, Y., Li, H., Wang, H., Yuan, X.-Z., Wang, G., and Pan, M., J. Power Sources, 2012, vol. 205, p. 10.

    Article  CAS  Google Scholar 

  10. Li, J., Catalyst Layer Degradation, Diagnosis and Failure Mitigation. PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008.

    Google Scholar 

  11. Endoh, E., Terazono, S., Widjaja, H., and Takimoto, Y., Electrochem. Solid-State Lett., 2004, vol. 7, p. A209.

    Article  CAS  Google Scholar 

  12. Mathias, M.F., Makharia, R., Gasteiger, H.A., Conley, J.J., Fuller, T.J., Gittleman, G.J., Miller, P., Mittelsteadt, C.K., Yan, S.G., and Yu, P.T., Electrochem. Soc. Interf., 2005, vol. 14, p. 24.

    CAS  Google Scholar 

  13. Huang, X., Solasi, R., Zou, Y., Feshler, M., Reifsnider, K., Condit, D., Burlatsky, S., and Madden, T., J. Polym. Sci., 2006, vol. 16, p. 2346.

    Article  Google Scholar 

  14. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs.

  15. www.nedo.go.jp/nenryo/gijutsu/index.html.

  16. Teranishi, K., Kawata, K., Tsushima, S., and Hirai, S., Electrochem. Solid-State Lett., 2006, vol. 9, p. A475.

    Article  CAS  Google Scholar 

  17. Pozio, A., Silva, R.F., Francisco, M.D., and Giorgi, L., Electrochim. Acta, 2003, vol. 48, p. 1543.

    Article  CAS  Google Scholar 

  18. Avakov, V.B., Aliev, A.D., Beketaeva, L.A., Bogdanovskaya, V.A., Burkovskii, E.V., Dackevich, A.A., Ivanickii, B.A., Kazanskii, L.P., Kapustin, A.V., Korchagin, O.V., Kuzov, A.V., Landgraf, I.K., Lozovaya, O.V., Stankevich, M.M., Tarasevich, M.R., and Chalyh, A.E., Russ. J. Electrochem., 2014, vol. 50.

  19. de Bruijn, F.A., Dan, V.A.T., and Janssen, J.M., Fuel Cells, 2008, vol. 1, p. 3.

    Google Scholar 

  20. Wood, III D.L. and Borup, R.L., J. Electrochem. Soc., 2010, vol. 157, no. (8), p. B1251.

    Article  CAS  Google Scholar 

  21. Neyerlin, K.C., Gu, W., Jorne, J., Clark, A., and Gashteiger, H.A., J. Electrochem. Soc., 2007, vol. 154, no. 2, p. B279.

    Article  CAS  Google Scholar 

  22. Berezina, N.P., Timofeev, S.V., and Kononenko, N.A., J. Membr. Sci., 2002, vol. 209, p. 509.

    Article  CAS  Google Scholar 

  23. Demina, O.A., Berezina, N.P., Annikova, L.A., Demin, A.V., and Timofeev, S.V., Ser. Kriticheskie Tekhnologii. Membrany, 2007.

    Google Scholar 

  24. Liu, Y., Ji, C., Gu, W., Baker, D.R., Jorne, J., and Gasteiger, H.A., J. Electrochem. Soc., 2010, vol. 157, no. 8, p. B1154.

    Article  CAS  Google Scholar 

  25. Liu, Y., Murphy, M.W., Baker, D.R., Gu, W., Ji, C., Jorne, J., and Gasteiger, H.A., J. Electrochem. Soc., 2009, vol. 156, p. B970.

    Article  CAS  Google Scholar 

  26. Practical Surface Analysis by Auger And X-ray Photoelectron Spectroscopy, Seah, M.P. and Briggs, D., Eds., New York: Wiley, 1983.

    Google Scholar 

  27. Fuller, T.F., ECS Transactions, 2011, vol. 41, p. 621.

    Article  CAS  Google Scholar 

  28. Subramanian, N.P., Greszler, T.A., Zhang, J., Gu, W., and Makharia, R., J. Electrochem. Soc., 2012, vol. 159, p. B531.

    Article  CAS  Google Scholar 

  29. Arisetty, S., Wang, X., Ahluwalia, R.K., Mukundan, R., Borup, R., Davey, J., Langlois, D., Gambini, F., Polevaya, O., and Blanchet, S., J. Electrochem. Soc., 2012, vol. 159, p. B455.

    Article  CAS  Google Scholar 

  30. Neyerlin, K.C., Gu, W., Jorne, J., and Gashteiger, H.A., J. Electrochem. Soc., 2006, vol. 153, p. A1955.

    Article  CAS  Google Scholar 

  31. http://www2.dupont.com/FuelCells/en-US/products/literature.html.

  32. Debe, M.K., Schmoeckel, A.K., Vernstrom, G.D., and Atanasoski, R., J. Power Sources, 2006, vol. 161, p. 1002.

    Article  CAS  Google Scholar 

  33. Baker, R.D., Caulk, D.A., Neyerlin, K.C., and Murphy, M.W., J. Electrochem. Soc., 2009, vol. 156, p. B991.

    Article  CAS  Google Scholar 

  34. Beuscher, U., J. Electrochem. Soc., 2006, vol. 153, p. A1788.

    Article  CAS  Google Scholar 

  35. Poling, B.E., Prausnitz, J.M., and O’Connell, J.P., The Properties of Gases and Liquids., McGraw-Hill, 2000.

    Google Scholar 

  36. Avakov, V.B., Bogdanovskaya, V.A., Kapustin, A.V., Landgraf, I.K., Modestov, A.D., Radina, M.V., Stankevich, M.M., Tarasevich, M.R., and Tripachev, O.V., Russ. J. Electrochem., 2014, vol. 50.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Korchagin.

Additional information

Original Russian Text © M.R. Tarasevich, O.V. Korchagin, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 8, pp. 821–834.

This publication was prepared based on a lecture delivered at the All Russian Conference with international participation “Fuel Cells and Power Plants,” Chernogolovka, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasevich, M.R., Korchagin, O.V. Rapid diagnostics of characteristics and stability of fuel cells with proton-conducting electrolyte. Russ J Electrochem 50, 737–750 (2014). https://doi.org/10.1134/S1023193514080126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514080126

Keywords

Navigation