Skip to main content
Log in

Effect of organic dye on the performance of dye-sensitized solar cell utilizing TiO2 nanostructure films synthesized via CTAB-assisted liquid phase deposition technique

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

This work is concerned with the growth of TiO2 nanostructures as photovoltaic materials of dyesensitized solar cell (DSSC) via phase liquid deposition technique treated with CTAB surfactant. This work investigates the influence of organic dyes, N719, N3 and Z907 as photosensitizer on the photovoltaic parameters of TiO2 nanostructures dye-sensitized solar cells (DSSCs). It also highlights the effect of the concentration of the best dye, N719 on the performance of the cell. The platinum films as counter electrode of the DSSC were prepared by sputtering platinum pellet on ITO substrate. The redox couple of the electrolyte utilized in the DSSC was iodide/triiodide. The cell sensitized with N719 dye demonstrated the best performance compared with the cell sensitized with another two dyes, N3 and Z907. This is due to N719 dye possess the highest optical absorption in visible region. The cell sensitized with 0.8 mM N719 dye performs the highest short-circuit current density, J sc and power conversion efficiency, η since it posses the highest absorption in visible region. The DSSC utilizing 0.8 mM N719 dye demonstrated the highest J sc and η of 6.48 mA cm−2 and 1.69%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grätzel, M., Nature, 2001, vol. 414, p. 338.

    Article  Google Scholar 

  2. Grätzel, M., J. Photochem. Photobiol. Ser. C, 2003, vol. 4, p. 145.

    Article  Google Scholar 

  3. O’Regan, B. and Grätzel, M., Nature, 1991, vol. 353, p. 737.

    Article  Google Scholar 

  4. Yella, A., Lee, H.W., and Tsao, H.N., Science, 2011, vol. 334, p. 629.

    Article  CAS  Google Scholar 

  5. Grätzel, M., J. Photochem. Photobiol. Ser. A, 2004, vol. 164, p. 3.

    Article  Google Scholar 

  6. Chen, W., Qiu, Y., and Yan, K., J. Power Sources, 2011, vol. 196, p. 10806.

    Article  CAS  Google Scholar 

  7. Umar, A.A. and Oyama, M., Crystal Growth Design, 2008, vol. 8, p. 1808.

    Article  CAS  Google Scholar 

  8. Taer, E., Deraman, M., and Talib, I.A., Curr. Appl. Phys., 2010, vol. 10, p. 1071.

    Article  Google Scholar 

  9. Angelis, F.D., Fantacci, S., and Selloni A., Nano. Lett., 2007, vol. 7, p. 3189.

    Article  Google Scholar 

  10. Nazeeruddin, M.K., Baranoff, E., and Grätzel, M., Sol. Energy, 2011, vol. 85, p. 1172.

    Article  CAS  Google Scholar 

  11. Lee, K.M., Hsu, C.Y., and Chiu, W.H., Sol. Ener. Mater. Sol. Cells, 2009, vol. 93, p. 2003.

    Article  CAS  Google Scholar 

  12. Wang, P., Zakeeruddin, S.M., and Moser, J.E., Nat. Mater., 2003, vol. 2, p. 402.

    Article  CAS  Google Scholar 

  13. Roza, L., Umar, A.A., and Rahman, M.Y.A., Adv. Mater. Res., 2012, vol. 364, p. 393.

    Article  CAS  Google Scholar 

  14. Rika, T., Rahman, M.Y.A., and Salleh, M.M., J. Sol. State Electrochem., 2010, vol. 14, p. 2089.

    Article  CAS  Google Scholar 

  15. Rahman, M.Y.A., Salleh, M.M., and Talib, I.A., Curr. Appl. Phys., 2007, vol. 7, p. 446.

    Article  Google Scholar 

  16. Wu, S., Han, H., and Tai, Q., J. Power Sources, 2008, vol. 182, p. 119.

    Article  CAS  Google Scholar 

  17. Yoon, J., Kang, D., and Won, J., J. Power Sources, 2012, vol. 201, p. 395.

    Article  CAS  Google Scholar 

  18. Avellaneda, C.O., Gonçalves, A.D., and Benedetti, J.E., Electrochim. Acta, 2010, vol. 55, p. 1468.

    Article  CAS  Google Scholar 

  19. Xu, H., Tao, X., and Wang, D.T., Electrochim. Acta, 2010, vol. 55, p. 2280.

    Article  CAS  Google Scholar 

  20. Ohsaki, Y., Masaki, N., and Kitamura, T., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 4157.

    Article  CAS  Google Scholar 

  21. Baxter, J.B. and Aydil, E.S., Appl. Phys. Lett., 2005, vol. 86, p. 053114.

    Article  Google Scholar 

  22. Krašovec, U.O., Berginc, M., and Hočevar, M., Sol. Ener. Mater. Sol. Cells, 2009, vol. 93, p. 379.

    Article  Google Scholar 

  23. Kandavelu, V., Huang, H.S., and Jian, J.L., Sol. Energy, 2009, vol. 83, p. 574.

    Article  CAS  Google Scholar 

  24. Perera, V.P.S., Pitigala, P.K.D.D.P., and Seneviratne, M.K.I., Sol. Ener. Mater. Sol. Cells, 2009, vol. 85, p. 91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Y. A. Rahman or A. A. Umar.

Additional information

Published in Russian in Elektrokhimiya, 2014, Vol. 50, No. 11, pp. 1192–1197.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.Y.A., Umar, A.A., Roza, L. et al. Effect of organic dye on the performance of dye-sensitized solar cell utilizing TiO2 nanostructure films synthesized via CTAB-assisted liquid phase deposition technique. Russ J Electrochem 50, 1072–1076 (2014). https://doi.org/10.1134/S1023193514080114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514080114

Keywords

Navigation