Skip to main content
Log in

Mechanism of the effect of oxygen-modified carbon nanotubes on the kinetics of oxygen electroreduction on platinum

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The relationship between the concentration of quinone groups in the electrode material containing carbon nanotubes (CNTs) and platinized carbon black and the efficiency of the use of the platinum surface in oxygen reduction was studied by cyclic voltammetry and rotating disc electrode methods. The effect of quinone groups on the oxygen coverage of the platinum surface and the density of the kinetic currents of molecular oxygen reduction on the platinum surface was investigated. A mechanism by which the oxygen-modified CNTs affect the kinetics of oxygen electroreduction on platinum was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nechitailov, A.A., Glebova, N.V., Koshkina, D.V., Tomasov, A.A., Zelenina, N.K., and Terukova, E.E., Pis’ma Zh. Tekh. Fiz., 2013, vol. 39, no. 17, pp. 15–26.

    Google Scholar 

  2. Kannan, A.M., Veedu, V.P., Munukutla, L., and Ghasemi-Nejhad, M.N., Electrochem. Solid-State Lett., 2007, vol. 10, p. B47.

    CAS  Google Scholar 

  3. Guber, L., Scherer, G., and Guenther, A.W., Phys. Chem. Chem. Phys., 2001, vol. 3, p. 325.

    Google Scholar 

  4. Tang, H., Chen, J.H., Huang, Z.P., Wang, D.Z., Ren, Z.F., Nie, L.H., Kuang, Y.F., and Yao, S.Z., Carbon, 2004, vol. 42, p. 191.

    CAS  Google Scholar 

  5. Serp, F. and Figueiredo, J.S., Carbon Materials for Catalysis, New Jersey: Wiley, 2008, p. 579.

    Google Scholar 

  6. Ang, L.M., Hor, T.S.A., Xu, G.Q., Tung, C.H., Zhao, S.P., and Wang, J.L.S., Carbon, 2000, vol. 38, p. 363.

    CAS  Google Scholar 

  7. Ang, L.M., Hor, T.S.A., Xu, G.Q., Tung, C.H., Zhao, S.P., and Wang, J.L.S., Chem. Mat., 1999, vol. 11, p. 2115.

    CAS  Google Scholar 

  8. Yu, R., Chen, L., Liu, Q., Lin, J., Tan, K-L., Ng, S.C., Chan, H.S.O., Xu, G-Q., and Hor, T.S.A., Chem. Mat., 1998, vol. 10, p. 718.

    CAS  Google Scholar 

  9. Xing, Y., J. Phys. Chem. B, 2004, vol. 108, p. 19255.

    CAS  Google Scholar 

  10. Xing, Y., Li, L., Chusuei, C.C., and Hull, R.V., Langmuir, 2005, vol. 21, p. 4185.

    CAS  Google Scholar 

  11. Che, G., Lakshmi, B.B., Martin, C.R., and Fisher, E.R., Langmuir, 1999, vol. 15, p. 750.

    CAS  Google Scholar 

  12. Che, G., Lakshmi, B.B., Fisher, E.R., and Martin, C.R., Nature, 1998, vol. 393, p. 346.

    CAS  Google Scholar 

  13. Lago, R.M., Tsang, S.C., Lu, K.L., Chen, Y.K., and Green, M.L.H., Chem. Commun., 1995, vol. 13, p. 1355.

    Google Scholar 

  14. Kyotani, T., Tsai, L-F., and Tomita, A., Chem. Commun., 1997, vol. 7, p. 701.

    Google Scholar 

  15. Guan, L., Shi, Z., Li, H., You, L., and Gu, Z., Chem. Commun., 2004, vol. 17, p. 1988.

    Google Scholar 

  16. Sloan, J., Hammer, J., Zwiefka-Sibley, M., and Green, M.L.H., Chem. Commun., 1998, vol. 3, p. 347.

    Google Scholar 

  17. Glebova, N.V., Nechitailov, A.A., and Gurin, V.N., Pis’ma Zh. Tekh. Fiz., 2011, vol. 37, no. 14, p. 32.

    Google Scholar 

  18. Filippov, A.K., Fedorov, M.A., Glebova, N.V., Nechitailov, A.A., Terukov, E.I., and Filippov, R.A., Abstracts of Papers, 7-aya Ros. konf. “Fizicheskie problemy vodorodnoi energetiki” (7th Russian Conf. “Physical Problems of Hydrogen Energetics,” St. Petersburg, November 21–23, 2011), St. Petersburg, 2011, p. 188.

    Google Scholar 

  19. Glebova, N.V., Nechitailov, A.A., Terukova, E.E., Terukov, E.I., Kukushkina, Yu.A., and Filippov, A.K., Al’tern. Energ. Ekol., 2011, no. 9, p. 83.

    Google Scholar 

  20. de Bruijn, F.A., Dam, V.A.T., and Janssen, G.J.M., Fuel Cells, 2008, vol. 08, no. 1, p. 3.

    Google Scholar 

  21. Paulus, U.A., Schmidt, T.J., Gasteiger, H.A., and Behm, R.J., J. Electroanal. Chem., 2001, vol. 495, p. 134.

    CAS  Google Scholar 

  22. Robell, A.J., Ballou, E.V., and Boudart, M., J. Phys. Chem., 1964, vol. 68, p. 2748.

    CAS  Google Scholar 

  23. Srinivas, S.T. and Rao, P.K., J. Catal., 1994, vol. 148, p. 470.

    CAS  Google Scholar 

  24. Conner, W.C. and Falconer, J.L., Chem. Rev., 1995, vol. 95, p. 759.

    CAS  Google Scholar 

  25. Stadie, N.P., Purewal, J.J., Ahn, C.C., and Fultz, B., Langmuir, 2010, vol. 26, p. 15481.

    CAS  Google Scholar 

  26. Kocha, S.S., in Handbook of Fuel Cells-Fundamentals, Technology and Applications, Vielstich, W., Gasteiger, H.A., and Lamm, A., Eds., Chichester: Wiley, 2003, vol. 3.

  27. Zhang, J., PEM Fuel Cell Electrocatalysts and Catalyst Layers, Vancouver: Springer, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nechitailov.

Additional information

Original Russian Text © A.A. Nechitailov, N.V. Glebova, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 8, pp. 835–840.

This publication was prepared based on a lecture delivered at the All_Russian Conference with international participation “Fuel Cells and Power Plants,” Chernogolovka, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechitailov, A.A., Glebova, N.V. Mechanism of the effect of oxygen-modified carbon nanotubes on the kinetics of oxygen electroreduction on platinum. Russ J Electrochem 50, 751–755 (2014). https://doi.org/10.1134/S1023193514080102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514080102

Keywords

Navigation