Abstract
Physico-chemical and structural properties of nanocomposite NiO/ZrO2:Y2O3 (NiO/YSZ) films applied using the reactive magnetron deposition technique are studied for application as anodes of solid oxide fuel cells. The effect of oxygen consumption and magnetron power on the discharge parameters is determined to find the optimum conditions of reactive deposition. The conditions for deposition of NiO/YSZ films, under which the deposition rate is maximum (12 μm/h), are found and the volume content of Ni is within the range of 40–50%. Ni-YSZ films reduced in a hydrogen atmosphere at the temperature of 800°C have a nanoporous structure. However, massive nickel agglomerates are formed in the course of reduction on the film surface; their amount grows at an increase in Ni content in the film. Solid oxide fuel cells with YSZ supporting electrolyte and a LaSrMnO3 cathode are manufactured to study electrochemical properties of NiO/YSZ films. It is shown that fuel cells with a nanocomposite NiO/YSZ anode applied using a magnetron sputtering technique have the maximum power density twice higher than in the case of fuel cells with an anode formed using the high-temperature sintering technique owing to a more developed gas-anode-electrolyte three-phase boundary.
This is a preview of subscription content, access via your institution.
References
Williams, M.C., Fuel Cells, 2001, vol. 1, p. 87.
Bobrenok, O.F. and Predtechenskii, M.R., Russ. J. Electrochem., 2010, vol. 46, p. 798.
Beckel, D., Bieberle-Hutter, A., Harvey, A., Infortuna, A., Muecke, U.P., Prestat, M., Rupp, J.L.M., and Gauckler, L.J., J. Power Sources, 2007, vol. 173, p. 325.
Kim, Y.B., Park, J.S., Gur, T.M., and Prinz, F.B., J. Power Sources, 2011, vol. 196, p. 10550.
Su, P.C., Chao, C.C., Shim, J.H., Fasching, R., and Prinz, F.B., Nano Lett., 2008, vol. 8, p. 2289.
Sochugov, N.S., Soloviev, A.A., Shipilova, A.V., and Rotshtain, V.P., Int. J. Hydrogen Energy, 2011, vol. 36, no. 9, p. 5550.
Costamagna, P., Costa, P., and Antonucci, V., Electrochim. Acta, 1998, vol. 43, p. 375.
Muecke, U.P., Beckel, D., Bernard, A., Bieberle-Hutter, A., Graf, S., Infortuna, A., Muller, P., Rupp, J.L.M., Schneider, J., and Gauckler, L.J., Adv. Funct. Mater., 2008, vol. 18, p. 31.
Muecke, U.P., Graf, S., Rhyner, U., and Gauckler, L.J., Acta Materialia, 2008, vol. 56, p. 677.
Pratihar, S.K., Dassharma, A., and Maiti, H.S., J. Mater. Sci., 2007, vol. 42, p. 7220.
Noh, H., Park, J., Son, J., Lee, H., Lee, J., and Lee, H., J. Am. Ceram. Soc., 2009, vol. 92, no. 12, p. 3064.
Meng, B., Sun, Y., He, X.D., and Li, M.W., Mater. Sci. Technol., 2008, vol. 24, no. 8, p. 997.
Jou, Sh. and Wu, Tz.-H., J. Phys. Chem. Solids, 2008, vol. 69, p. 2804.
Rezugina, E., Thomann, A.L., Hidalgo, H., Brault, P., Dolique, V., and Tessier, Y., Surf. Coat. Technol., 2010, vol. 204, p. 2376.
Movchan, B.A. and Lemkey, F.D., Surf. Coat. Technol, 2003, vol. 165, p. 90.
La, O.G.J., Hertz, J., Tuller, H., and Shao-Horn, Y., J. Electroceramics, 2004, vol. 13, p. 691.
Hertz, J.L. and Tuller, H.L., J. Electrochem. Soc., 2007, vol. 154, no. 4, p. 413.
Hayashi, K., Yamamoto, O., Nishigaki, Y., and Ninoura, H., Denki Kagaku, 1996, vol. 64, no. 10, p. 1097.
Wang, L.S. and Barnett, S.A., Solid State Ionics, 1995, vol. 76, p. 103.
Kukla, R., Surf. Coat. Technol., 1997, vol. 93, p. 1.
Solov’ev, A.A., Sochugov, N.S., Ionov, I.V., Kirdyashkin, A.I., Kitler, V.D., Maznoi, A.S., Maksimov, Yu.M., and Sigfusson, T.I., Perspekt. Mater., 2013, no. 4, p. 31.
Solov’ev, A.A., Sochugov, N.S., Shipilova, A.V., Efimova, K.B., and Tumashevskaya, A.E., Russ. J. Electrochem., 2011, vol. 47, no. 4, p. 494.
Hotovy, I., Huran, J., Spiess, L., Liday, J., Sitter, H., and Hascik, S., Vacuum, 2003, vol. 69, p. 237.
Scardi, P., Polonioli, P., and Ferrari, S., Thin Solid Films, 1994, vol. 253, p. 349.
Jou, S., Yeh, D.Y., and Tseng, A.A., J. Nanosci. Nanotechnol., 2008, vol. 8, p. 390.
Klement, U., Erb, U., El-Sherik, A.M., and Aust, K.T., Mater. Sci. Eng., A, 1995, vol. 203, p. 177.
Knauth, P., Charai, A., and Gas, P., Scr. Metall. Mater., 1993, vol. 28, p. 325.
Holzera, L., Iwanschitz, B., Hocker, Th., Munch, B., Prestat, M., Wiedenmann, D., Vogt, U., Holtappels, P., Sfeir, J., Mai, A., and Graule, Th., J. Power Sources, 2011, vol. 196, p. 1279.
Gubner, A., Landes, H., Metzger, J., Seeg, H., and Stübner, R., Proc. 192nd Meeting of the Electrochemical Society, ECS, Paris, 1997, p. 844.
Vassen, R., Simwonis, D., and Stover, D., J. Mater. Sci., 2001, vol. 36, p. 147.
Noh, H.S., Son, J.W., Lee, H., Ji, H.I., Lee, J.H., and Lee, H.W., J. Eur. Ceram. Soc., 2010, vol. 30, p. 3415.
Jiang, S., J. Power Sources, 2008, vol. 183, no. 2, p. 595.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.A. Solov’ev, N.S. Sochugov, I.V. Ionov, A.V. Shipilova, A.N. Koval’chuk, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 7, pp. 724–732.
This publication was prepared based on a lecture delivered at the All-Russian Conference with international participation “Fuel Cells and Power Plants,” Chernogolovka, 2013.
Rights and permissions
About this article
Cite this article
Solov’ev, A.A., Sochugov, N.S., Ionov, I.V. et al. Magnetron formation of Ni/YSZ anodes of solid oxide fuel cells. Russ J Electrochem 50, 647–655 (2014). https://doi.org/10.1134/S1023193514070155
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1023193514070155