Skip to main content
Log in

Oxygen isotope exchange in the LSM-YSZ composite under the conditions of long-term tests

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The stability of the properties of the composite 40 vol % La0.6Sr0.4MnO3 − δ-60 vol % Zr0.83Y0.17O1.92 (LSM-YSZ) held for 1000 h at a temperature of 800°C and an oxygen pressure of 1.01 kPa and changes in its microstructure were studied by isotope exchange and gas-phase analysis. The oxygen exchange was found to occur by the dissociative adsorption mechanism involving the adsorption forms of oxygen on the triple-phase LSM-YSZ-O2 boundary. The rate-determining step of the oxygen exchange of the composite did not change with time. The rate of oxygen exchange decreased by 22%, which is comparable to the decrease in the length of the LSM-YSZ-O2 triple-phase boundary (∼20%), on which oxygen exchange is dominant. The conductivity of the LSM-YSZ composite increased due to the connectivity of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neumann, A.Ph., PhD Thesis, Forschungzentrum, Yulic, 2011, 218 p.

  2. Backhaus-Ricoult, M., Solid State Sci., 2008, vol. 10, p. 670.

    Article  CAS  Google Scholar 

  3. Schuler, J.A., Tanasini, P., Hessler-Wyser, A., Comninellis, Ch., and Herle, J.V., Electrochem. Commun., 2010, vol. 12, p. 1682.

    Article  CAS  Google Scholar 

  4. Anan’yev, M., Gavrilyuk, A., Bronin, D., Steinberger-Wilckens, R., and Mertens, J., Proc. 15th Eur. Fuel Cell Forum, 2011, p. 21.

    Google Scholar 

  5. Tanasini, P., Schuler, J.A., Wuillemin, Z., Ameur, M.L.B., Comninellis, Ch., and Herle, J.V., J. Power Sources, 2011, vol. 196, p. 7097.

    Article  CAS  Google Scholar 

  6. Wiik, K., Schmidt, C.R., Faaland, S., Shamsili, S., Einarsrud, M.-A., and Grande, T., J. Am. Ceram. Soc., 1999, vol. 82, no. 3, p. 721.

    Article  CAS  Google Scholar 

  7. Yang, Ch.-Ch.T. and Wei, W.-Ch.J., J. Am. Ceram. Soc., 2004, vol. 87, no. 6, p. 1110.

    Article  CAS  Google Scholar 

  8. Van Roosmalen, J.A.M. and Cordfunke, E.H.P., Solid State Ionics, 1992, vol. 52, p. 303.

    Article  Google Scholar 

  9. Liu, Y.L., Hagen, A., Barfod, R., Chen, M., Wang, H.J., Poulsen, F.W., and Hendriksen, P.V., Solid State Ionics, 2009, vol. 180, p. 1298.

    Article  CAS  Google Scholar 

  10. Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., Solid State Ionics, 1992, vols. 53–56, p. 418.

    Article  Google Scholar 

  11. Preis, W., Bucher, E., and Sitte, W., Fuel Cells, 2012, vol. 12, no. 4, p. 543.

    Article  CAS  Google Scholar 

  12. Armstrong, E.N., Duncan, K.I., and Wachsman, E.D., J. Electrochem. Soc., 2011, vol. 158, no. 3, p. B283.

    Article  CAS  Google Scholar 

  13. Ji, Y., Kilner, J.A., and Carolan, M.F., Solid State Ionics, 2005, vol. 176, p. 937.

    Article  CAS  Google Scholar 

  14. Druce, J.W. and Kilner, J.A., Proc. 18th Int. Conf. on Solid State Ionics, 2011, p. 307.

    Google Scholar 

  15. Esquirol, A., Kilner, J., and Brandon, N., Solid State Ionics, 2004, vol. 175, p. 63.

    Article  CAS  Google Scholar 

  16. Seeharaj, P., Berenov, A., Raj, E., Rudkin, R., and Atkinson, A., Solid State Ionics, 2011, vol. 192, p. 638.

    Article  CAS  Google Scholar 

  17. Okhlupin, Yu.S., Uvarov, N.F., Anan’yev, M.V., Bespalko, Yu.N., Pavlova, S.N., and Sadykov, V.A., Russ. J. Electrochem., 2011, vol. 47, no. 6, p. 663.

    Article  CAS  Google Scholar 

  18. Porotnikova, N.M., Cand. Sci. (Chem.) Dissertation, Yekaterinburg, 2013.

    Google Scholar 

  19. Kotov, Yu.A., J. Nanoparticle Res., 2003, no. 5, p. 539.

    Google Scholar 

  20. Bershitskaya, N.M., Anan’ev, M.V., Kurumchin, E.Kh., Gavrilyuk, A.L., and Pankratov, A.A., Elektrokhimiya. doi 10.1134/S1023193512100047

  21. Anan’ev, M.V. and Gavrilyuk, A.L., Abstracts of Papers, Sbornik tezisov 41-oi molodezhnoi konferentsii “Problemy teoreticheskoi i prikladnoi matematiki” (41st Young Scientists’ Conf. “Problems of Theoretical and Applied Mathematics”), Yekaterinburg, 2010, p. 522.

    Google Scholar 

  22. Anan’ev, M.V. and Gavrilyuk, A.L., Abstracts of Papers, Sbornik tezisov 42-oi molodezhnoi konferentsii “Problemy teoreticheskoi i prikladnoi matematiki” (42nd Young Scientists’ Conf. “Problems of Theoretical and Applied Mathematics”), Yekaterinburg, 2011, p. 276.

    Google Scholar 

  23. Ananyev, M.V. and Kurumchin, E.Kh., Russ. J. Phys. Chem., 2010, vol. 84, no. 6, p. 1039.

    Article  CAS  Google Scholar 

  24. Ananyev, M.V., Computer Program: State Registration Certificate no. 2011614003, Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 2011.

  25. Klier, K. and Kucera, E., J. Phys. Chem. Solids, 1966, vol. 27, p. 1087.

    Article  CAS  Google Scholar 

  26. Muzykantov, V.S., Panov, G.I., and Boreskov, G.K., Kinet. Katal., 1973, vol. 14, p. 948.

    CAS  Google Scholar 

  27. Ezin, A.N., Tsidilkovski, V.I., and Kurumchin, E.Kh., Solid State Ionics, 1996, vol. 84, p. 105.

    Article  CAS  Google Scholar 

  28. Muzykantov, V.S., Kinet. Katal., 1965, vol. 6, no. 5, p. 952.

    CAS  Google Scholar 

  29. Gorbova, E., Maragou, V., Medvedev, D., Demina, A., and Tsiakaras, P., J. Power Sources, 2008, vol. 181, p. 292.

    Article  CAS  Google Scholar 

  30. Cousin, I., Levitz, P., and Bruand, A., Eur. J. Soil Sci., 1996, vol. 47, no. 4, p. 439.

    Article  Google Scholar 

  31. Levitz, P., Adv. Colloid Interface Sci., 1998, vol. 77, p. 71.

    Article  Google Scholar 

  32. Grew, K.N., Chu, Y.S., Yi, J., Peracchio, A.A., Izzo, J.R., Hwu, Y., De Carlo, F., and Chiu, W.K.S., J. Electrochem. Soc., 2010, vol. 157, no. 6, p. B783.

    Article  CAS  Google Scholar 

  33. Faes, A., Hessler-Wyser, A., Presvytes, D., Vayenas, C.G., and van Herle, J., Fuel Cells. Special Issue: Durability and Degradation of Solid Oxide Fuel Cells, 2009, vol. 9, no. 6, p. 841.

    Article  CAS  Google Scholar 

  34. Munch, B., Gasser, P., Flatt, R., and Holzer, L., J. Am. Ceram. Soc., 2006, vol. 89, p. 2586.

    Article  CAS  Google Scholar 

  35. Holzer, L. and Munch, B., Microsc. Microanal., 2009, vol. 15, p. 130.

    Article  CAS  Google Scholar 

  36. Munch, B. and Holzer, L., J. Am. Ceram. Soc., 2008, vol. 91, p. 4059.

    Article  CAS  Google Scholar 

  37. Holzer, L., Iwanschitz, B., Hocker, Th., Munch, B., Prestat, M., Wiedenmann, D., Vogt, U., Holtappels, P., Sfeir, J., Mai, A., and Graule, Th., J. Power Sources, 2011, vol. 196, p. 1279.

    Article  CAS  Google Scholar 

  38. Bershitskaya, N., Ananyev, M., Eremin, V., Pankratov, A., and Kurumchin, E., 10th Int. Symp. on Systems with Fast Ionic Transport, 2012, p. 55.

    Google Scholar 

  39. Brown, M., Dollimore, D., and Galvey, A., in Reactions in the Solid State: Comprehensive Chemical Kinetics, vol. 22, New York: Elsevier, 1980.

    Google Scholar 

  40. Kim, J.H. and Choi, G.M., Solid State Ionics, 2000, vol. 130, p. 157.

    Article  CAS  Google Scholar 

  41. Cutler, R.A. and Meixner, D.L., Solid State Ionics, 2003, vol. 159, p. 9.

    Article  CAS  Google Scholar 

  42. Geguzin, Ya.A., Ocherki o diffuzii v kristallakh (Essays on Diffusion in Crystals), Moscow: Nauka, 1974.

    Google Scholar 

  43. Backhaus-Ricoult, M., Adib, K., Clair, T.St., Luerssen, B., Gregoratti, L., and Barinov, A., Solid State Ionics, 2008, vol. 179, p. 891.

    Article  CAS  Google Scholar 

  44. Kishimoto, H., Sakai, N., Horita, T., Yamaji, K., Brito, M.E., and Yokokawa, H., Solid State Ionics, 2007, vol. 178, p. 1317.

    Article  CAS  Google Scholar 

  45. Zhang, Y., Xia, Ch., and Ni, M., Int. J. Hydrogen Energy, 2012, vol. 37, p. 3392.

    Article  CAS  Google Scholar 

  46. Vasen, R., Simwonis, D., and Stover, D., J. Mater. Sci., 2001, vol. 36, p. 147.

    Article  Google Scholar 

  47. Palcut, M., Knibbe, R., Wiik, K., and Grande, T., Solid State Ionics, 2011, vol. 202, p. 6.

    Article  CAS  Google Scholar 

  48. Kishimoto, H., Sakai, N., Horita, T., Yamaji, K., Brito, M.E., and Yokokawa, H., Solid State Ionics, 2007, vol. 178, p. 1317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Porotnikova.

Additional information

Original Russian Text © N.M. Porotnikova, M.V. Ananyev, V.A. Eremin, D.A. Medvedev, A.S. Farlenkov, A.A. Pankratov, S.V. Plaksin, E.Kh. Kurumchin, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 7, pp. 758–767.

This publication was prepared based on a lecture delivered at the All-Russian Conference with international participation “Fuel Cells and Power Plants,” Chernogolovka, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porotnikova, N.M., Ananyev, M.V., Eremin, V.A. et al. Oxygen isotope exchange in the LSM-YSZ composite under the conditions of long-term tests. Russ J Electrochem 50, 680–689 (2014). https://doi.org/10.1134/S102319351407012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351407012X

Keywords

Navigation