Skip to main content
Log in

Effect of anodic potential on process of formation of polyporphyrin film in solutions of tetrakis(p-aminophenyl)porphin in dichloromethane

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrode impedance spectroscopy technique was used to study the process of formation of a conducting polyporphyrin film on a Pt electrode from a 10−3 M solution of tetrakis(p-aminophenyl)porphin in dichloromethane. An equivalent circuit is suggested for simulation of interface impedance in a wide range of working electrode potentials. It is shown that regions with a different mechanism of film formation are observed at an increase in potential from 0.0 to +1.0 V. The kinetics of film formation are studied at the potentials of +0.40, +0.60, and +0.80 V. It is found that good agreement is observed between the model and experimental data when the growing film is simulated using a Warburg element with a finite diffusion length. Conductivity and the diffusion coefficient of charge carriers in it are estimated on the basis of the suggested model for a film obtained at the potential of +0.40 V. It is shown that conductivity of a polyporphyrin film grows by more than an order of magnitude at an increase in deposition potential from +0.40 to +0.80 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Popov, I.A., Kuzmin, S.M., Chulovskaya, S.A., Semeikin, A.S., and Parfenyuk, V.I., Macroheterocycles, 2012, vol. 5, p. 131.

    Article  CAS  Google Scholar 

  2. Popov, I.A., Parfenyuk, V.I., and Semeikin, A.S., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2012, vol. 55, no. 8, p. 31.

    CAS  Google Scholar 

  3. Noskov, A.V., Tesakova, M.V., Popov, I.A., and Parfenyuk, V.I., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, no. 12, p. 51.

    CAS  Google Scholar 

  4. Tesakova, M.V., Noskov, A.V., Bazanov, M.I., Berezina, N.M., and Parfenyuk, V.I., Russ. J. Phys. Chem. A, 2012, vol. 86, p. 9.

    Article  CAS  Google Scholar 

  5. Bedioui, F., Devynck, J., and Bied-Charreton, C., Acc. Chem. Res., 1995, vol. 28, p. 30.

    Article  CAS  Google Scholar 

  6. Ballarin, B., Masiero, S., Seeber, R., and Tonelli, D., J. Electroanal. Chem., 1998, vol. 449, p. 173.

    Article  CAS  Google Scholar 

  7. Deronzier, A. and Moutet, J.C., Coord. Chem. Rev., 1996, vol. 147, p. 339.

    Article  CAS  Google Scholar 

  8. Cauquis, G., Cosnier, S., Deronzier, A., Galland, B., Limosin, D., Moutet, J.C., Bizot, J., Deprez, D., and Pulicani, J.P., J. Electroanal. Chem., 1993, vol. 352, p. 181.

    Article  CAS  Google Scholar 

  9. Allietta, N., Pansu, R., Bied-Charreton, C., Albin, V., Bedioui, F., and Devynck, J., Synth. Met., 1996, vol. 81, p. 205.

    Article  CAS  Google Scholar 

  10. Lin, C.Y., Hung, Y.C., Liu, C.M., Lo, C.F., Lin, Y.C., and Lin, C.L., Dalton Trans., 2005, vol. 2, p. 396.

    Article  Google Scholar 

  11. Kuester, S.N., McGuire, M.M., and Drew, S.M., J. Electroanal. Chem., 1998, vol. 452, p. 13.

    Article  CAS  Google Scholar 

  12. Schaming, D., Ahmed, I., and Hao, J., Electrochim. Acta, 2011, vol. 56, p. 10454.

    Article  CAS  Google Scholar 

  13. Vorotyntsev, M.A., Konev, D.V., and Devillers, C.H., Electrochim. Acta, 2010, vol. 55, p. 6703.

    Article  CAS  Google Scholar 

  14. Walter, M.G. and Wamser, C.C., J. Phys. Chem. C, 2010, vol. 114, p. 7563.

    Article  CAS  Google Scholar 

  15. Gordon, A. and Ford, G., Sputnik khimika (The Chemist’s Companion), Moscow: Mir, 1976.

    Google Scholar 

  16. Bykova, V.V., Usol’tseva, N.V., Semeikin, A.S., Anan’eva, G.A., and Karmanova, T.V., Zhidk. Krist. Ikh Prakt. Ispol’z., 2007, vol. 4, p. 67.

    Google Scholar 

  17. Semeikin, A.S., Koifman, O.I., and Berezin, B.D., Khim. Geterotsikl. Soedin., 1982, vol. 10, p. 1354.

    Google Scholar 

  18. Zplot for Windows. Electrochemical Impedance Software. Operating Manual version 2.4, Scribner Associates, Inc., 2001.

  19. Sluyters-Rehbach, M., Pure Appl. Chem., 1994, vol. 66, p. 1831.

    Article  CAS  Google Scholar 

  20. Stoinov, Z.B., Grafov, B.M., Savvova-Stoinova, B.S., and Elkin, V.V., Elektrokhimicheskii impedans (Electrochemical Impedance), Moscow: Nauka, 1991.

    Google Scholar 

  21. Pajkossy, T. and Nyikos, L., Electrochim. Acta, 1989, vol. 34, p. 171.

    Article  CAS  Google Scholar 

  22. Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P., and Lips, A., J. Colloid Interface Sci., 2006, vol. 303, p. 56.

    Article  CAS  Google Scholar 

  23. Tesakova, M.V., Popov, I.A., Sheinin, V.B., Semeikin, A.S., Parfenyuk, V.I., and Koifman, O.I., Macroheterocycles, 2013 (in press). doi: 10.6060/mhc121195p

    Google Scholar 

  24. Poncea, M.A., Parraa, R., Savub, R., Joanni, E., Buenob, P.R., Cilenseb, M., Varelab, J.A., and Castroa, M.S., Sen. Actuators, 2009, vol. 139, p. 447.

    Article  Google Scholar 

  25. Ragoisha, G.A. and Bondarenko, A.S., Electrochim. Acta, 2005, vol. 50, p. 1553.

    Article  CAS  Google Scholar 

  26. Lokesh, K.S., Keersmaecker, M., and Adriaens, A., Molecules, 2012, vol. 17, p. 7824.

    Article  CAS  Google Scholar 

  27. Takahashi, D., Uchiyama, T., Itoh, T., Nishizawa, M., and Uchida, I., J. Power Sources, 2001, vol. 93, p. 93.

    Article  Google Scholar 

  28. Skale, S., Doleck, V., and Slemnik, M., Corros. Sci., 2007, vol. 49, p. 1045.

    Article  CAS  Google Scholar 

  29. Frumkin, A.N., Potentsialy nulevogo zaryada (Zero Charge Potentials), Moscow: Nauka, 1979.

    Google Scholar 

  30. Chen, D., Tao, Q., Liao, L.W., Liu, S.X., Chen, Y.X., and Ye, S., Electrocatalysis, 2011, vol. 2, p. 207.

    Article  CAS  Google Scholar 

  31. Ragoisha, G.A. and Bondarenko, A.S., Electrochim. Acta, 2005, vol. 50, p. 1553.

    Article  CAS  Google Scholar 

  32. Lasia, A., in Modern Aspects of Electrochemistry, Conway, B.E., Bockris, J.O’M., and White, R.E., Eds., New York: Kluwer Academic/Plenum Publishers, 1999, vol. 32, ch. 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Kuz’min.

Additional information

Original Russian Text © S.M. Kuz’min, S.A. Chulovskaya, V.I. Parfenyuk, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 5, pp. 480–489.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’min, S.M., Chulovskaya, S.A. & Parfenyuk, V.I. Effect of anodic potential on process of formation of polyporphyrin film in solutions of tetrakis(p-aminophenyl)porphin in dichloromethane. Russ J Electrochem 50, 429–437 (2014). https://doi.org/10.1134/S1023193514050073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514050073

Keywords

Navigation