Skip to main content
Log in

Theoretical prediction for the half wave reduction potential of organic molecules

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A quantitative structure-property relationship (QSPR) was developed using partial least square (PLS) and Levenberg-Marquardt artificial neural network (L-M ANN) modeling to study of half-wave reduction potential (E 1/2) of some organic compounds. A set of 67 organic compounds were selected and suitable sets of molecular descriptors were calculated. The genetic algorithm was used as descriptor selection and model development method. Then selected descriptors were used as inputs for artificial neural network model. The stability and prediction ability of these models were validated using Leave-Group-out cross-validation (LGO CV) and external test set techniques. The described model does not parameters require experimental and potentially provides useful prediction for E 1/2 of new organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seager, S.L. and Slabaugh, M.R., Chemistry for Today: General, Organic, and Biochemistry, Thomson Brooks/Cole, 2004, p. 342.

    Google Scholar 

  2. Jover, J., Bosque, R., Martinho Simões, J.A., and Sales, J., J. Organomet. Chem., 2008, vol. 693, p. 1261.

    Article  CAS  Google Scholar 

  3. Wu, Ch., Liu, N., Wu, Q., Wang, Ch., and W, Zh., Anal. Chim. Acta, 2010, vol. 679, p. 56.

    Article  CAS  Google Scholar 

  4. Comerton, A.M., Andrews, R.C., and Bagley, D.M., Water Res., 2009, vol. 43, p. 613.

    Article  CAS  Google Scholar 

  5. Ding, G. and Rice, J.A., Chemosphere, 2011, vol. 84, p. 519.

    Article  CAS  Google Scholar 

  6. Rivett, M.O., Wealthall, G.P., Dearden, R.A., and McAlary, T.A., J. Contain. Hydrol., 2011, vol. 123, p. 130

    Article  CAS  Google Scholar 

  7. Iwan, A. and Sek, D., Prog. Polym. Sci., 2011, vol. 36, p. 1277.

    Article  CAS  Google Scholar 

  8. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Russ. J. Electrochem., 2005, vol. 41, p. 122.

    Article  CAS  Google Scholar 

  9. Tompe, P., Clementis, G., Petnehazy, I., Jaszay, Z.M., and Toke, L., Anal. Chim. Acta, 1995, vol. 305, p. 295.

    Article  Google Scholar 

  10. Nesmerak, K., Nemec, I., Sticha, M., Waisser, K., and Palat, K., Electrochim. Acta, 2005, vol. 50, p. 1431.

    Article  CAS  Google Scholar 

  11. Yuan, S., Xiao, M., Zheng, G., Tian, M., and Lu, X., SAR/QSAR Environ. Res., 2006, vol. 17, p. 473.

    CAS  Google Scholar 

  12. Hemmateenejad, B. and Yazadani, M., Anal. Chim. Acta, 2009, vol. 634, p. 27.

    Article  CAS  Google Scholar 

  13. Noorizadeh, H. and Noorizadeh, M., Med. Chem. Res., 2012, vol. 21, p. 1997.

    Article  CAS  Google Scholar 

  14. Noorizadeh, H. and Farmany, A., Drug Test Anal., 2012, vol. 4, no. 2, p. 151.

    Article  CAS  Google Scholar 

  15. Hemmateenejad, B., Javadnia, K., and Elyasi, M., Anal. Chim. Acta, 2007, vol. 592, p. 72.

    Article  CAS  Google Scholar 

  16. Kornhuber, J., Terfloth, L., Bleich, S., Wiltfang, J., Rupprecht, R., Eur. J. Med. Chem., 2009, vol. 44, p. 2667.

    Article  CAS  Google Scholar 

  17. Tang, W.Z. and Wang, F., Chemosphere, 2010, vol. 78, p. 914.

    Article  CAS  Google Scholar 

  18. Todeschini, R. and Consonni, V., Handbook of Molecular Descriptors, Weinheim: Wiley-VCH, 2000, p. 231.

    Book  Google Scholar 

  19. Deeb, O., Chemom. Intell. Lab. Syst., 2010, vol. 104, p. 181.

    Article  CAS  Google Scholar 

  20. Van, D.G. and Van, H.M.M., Chemom. Intell. Lab. Syst., 2011, vol. 107, p. 318.

    Article  Google Scholar 

  21. Hao, M., Li, Y., Wang, Y., and Zhang, Sh., Anal. Chim. Acta, 2011, vol. 690, p. 53.

    Article  CAS  Google Scholar 

  22. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-hill, 1973, p. 186.

    Google Scholar 

  23. Todeschini, R., Consonni, V., Mauri, A., and Pavan, M., DRAGON-Software for the calculation of molecular descriptors, Version 3.0 for Windows, 2003.

    Google Scholar 

  24. Arora, V. and Bakhshi, A.K., Chem. Phys., 2011, vol. 382, p. 113.

    Article  CAS  Google Scholar 

  25. Zhou, X., Li, Zh., Dai, Z., and Zou, X., J. Mol. Graphics Modell., 2010, vol. 29, p. 188.

    Article  CAS  Google Scholar 

  26. Sarıpınar, E., Geçen, N., Şahin, K., and Yanmaz, E., Eur. J. Med. Chem., 2010, vol. 45, p. 4157.

    Article  Google Scholar 

  27. Singh, K.P., Ojha, P., Malik, A., and Jain, G., Chemom. Intell. Lab. Syst., 2009, vol. 99, p. 150.

    Article  CAS  Google Scholar 

  28. Parthiban, Th., Ravi, R., and Kalaiselvi, N., Electrochim. Acta, 2007, vol. 53, p. 1877.

    Article  CAS  Google Scholar 

  29. Jalali-Heravi, M., Asadollahi-Baboli, M., and Shahbazikhah, P., Eur. J. Med. Chem., 2008, vol. 43, p. 548.

    Article  CAS  Google Scholar 

  30. Singh, K.P., Basant, N., Malik, A., and Jain, G., Anal. Chim. Acta, 2010, vol. 658, p. 1.

    Article  CAS  Google Scholar 

  31. Tourwé, E., Pintelon, R., and Hubin, A., J. Electroanal. Chem., 2006, vol. 594, p. 50.

    Article  Google Scholar 

  32. Roy, K. and Pratim, R.P., Eur. J. Med. Chem., 2009, vol. 44, p. 1941.

    Article  CAS  Google Scholar 

  33. Kumar, G.V., Khani, H., Ahmadi-Roudi, B., Mirakhorli, Sh., Fereyduni, E., and Agarwal, Sh., Talanta, 2011, vol. 83, p. 1014.

    Article  Google Scholar 

  34. Frapiccini, A.L., Gasaneo, G., Colavecchia, F.D., and Mitnik, D., J. Electron. Spectrosc. Relat. Phenom., 2007, vol. 161, p. 199.

    Article  CAS  Google Scholar 

  35. Chamjangali, M.A., Beglari, M., and Bagherian, G., J. Mol. Graphics Modell., 2007, vol. 26, p. 360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Noorizadeh.

Additional information

Published in Russian in Elektrokhimiya, 2014, Vol. 50, No. 6, pp. 645–653.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noorizadeh, H., Farmany, A. Theoretical prediction for the half wave reduction potential of organic molecules. Russ J Electrochem 50, 579–586 (2014). https://doi.org/10.1134/S102319351401008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351401008X

Keywords

Navigation