Skip to main content
Log in

Electrochemical and ESR study of the mechanism of oxidation of phenazine-di-N-oxide in the presence of cyclohexanol on glassy carbon and single-walled carbon nanotube electrodes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The mechanism of oxidation of phenazine-di-N-oxide in the presence of cyclohexanol was studied by cyclic voltammetry on glassy carbon (GC) and single-walled carbon nanotube (SWCNT) electrodes in 0.1 M LiClO4 solutions in acetonitrile. The effect of cyclohexanol on the shape of the cyclic voltammograms of phenazine-di-N-oxide and the intensity of the ESR signal of its radical cation was investigated. It was shown by ESR that the products of the one-electron oxidation and reduction of phenazine-di-N-oxide were radical cations and anions. The catalytic currents were recorded during the oxidation of phenazine-di-N-oxide on the SWCNT and GC electrodes in the presence of cyclohexanol. The results were explained in terms of the E1C1E2C2 mechanism of the two-stage electrode process characterized by the catalytic current recorded at the second electrode stage. The overall two-electron catalytic oxidation of cyclohexanol in the complex with the phenazine-di-N-oxide radical cation was assumed to occur. It was shown that SWCNT electrodes can be used in the electrocatalytic oxidation of organic compounds in the presence of the electrochemically generated phenazine-di-N-oxide radical cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulakovskaya, S.I., Berdnikov, V.M., Tikhonov, A.Ya., Volodarskii, L.B., and Maier, V.E., Russ. J. Electrochem., 1993, vol. 29, p. 40.

    Google Scholar 

  2. Kulakovskaya, S.I., Berdnikov, V.M., Vasilenko, A.A., Tikhonov, A.Ya., and Volodarskii, L.B., Russ. J. Electrochem., 1996, vol. 32, p. 784.

    CAS  Google Scholar 

  3. Kulakovskaya, S.I., Kulikov, A.V., Berdnikov, V.M., Ioffe, N.T., and Shestakov, A.F., Electrochim. Acta, 2002, vol. 47, p. 4245.

    Article  CAS  Google Scholar 

  4. Kulakovskaya, S.I., Kulikov, A.V., and Shestakov, A.F., Russ. J. Electrochem., 2004, vol. 40, p. 1035.

    Article  CAS  Google Scholar 

  5. Kulakovskaya, S.I., Kulikov, A.V., and Shestakov, A.F., Russ. J. Electrochem., 2007, vol. 43, p. 1156.

    Article  CAS  Google Scholar 

  6. Kulakovskaya, S.I., Kulikov, A.V., and Shestakov, A.F., Russ. J. Electrochem., 2007, vol. 43, p. 1234.

    Article  CAS  Google Scholar 

  7. Kulakovskaya, S.I., Kulikov, A.V., and Shestakov, A.F., Russ. J. Electrochem., 2009, vol. 45, p. 1368.

    Article  CAS  Google Scholar 

  8. Kulakovskaya, S.I., Kulikov, A.V., and Shestakov, A.F., Russ. J. Electrochem., 2010, vol. 46, p. 1047.

    Article  CAS  Google Scholar 

  9. Krivenko, A.G. and Komarova, N.S., Russ. Chem. Rev., 2008, vol. 77, p. 927.

    Article  CAS  Google Scholar 

  10. Pumera, M., Sasaki, T., and Iwai, H., Chem. Asian J., 2008, vol. 3, p. 2046.

    Article  CAS  Google Scholar 

  11. Zhu, S. and Xu, G., Nanoscale, 2010, vol. 2, p. 2538.

    Article  CAS  Google Scholar 

  12. Balasubramanian, K., Kurkina, T., Ahmad, A., Burghard, M., and Kern, K., J. Mater. Res., 2012, vol. 27, p. 391.

    Article  CAS  Google Scholar 

  13. Shen, J., Liu, A., Tu, Y., Foo, G., Yeo, C., Chan-Park, M.B., Jiang, R., and Chen, Y., Energy Environ. Sci., 2011, vol. 4, p. 4220.

    Article  CAS  Google Scholar 

  14. Ioffe, N.T. and Mairanovskii, V.G., Elektrokhimiya, 1986, vol. 22, p. 1695.

    CAS  Google Scholar 

  15. Clemo, G.R. and Mcilwain, H., J. Chem. Soc., 1938, p. 479.

    Google Scholar 

  16. Krestinin, A.V., Kharitonov, A.P., Shul’ga, Yu.M., Zhigalina, O.M., Knerel’man, E.I., Dubois, M., Brzhezinskaya, M.M., Vinogradov, A.S., Preobrazhenskii, A.B., Zvereva, G.I., Kislov, M.B., Martynenko, V.M., Korobov, I.I., Davydova, G.I., Zhigalina, V.G., and Kiselev, N.A., Ros. Nanotekhnologii, 2009, vol. 4, p. 67.

    Google Scholar 

  17. Krivenko, A.G., Matyushenko, V.I., Stenina, E.V., Sviridova, L.N., Krestinin, A.V., Zvereva, G.I., Kurmaz, V.A., Ryabenko, A.G., Dmitriev, S.N., and Skuratov, V.A., Electrochem. Commun., 2005, vol. 7, p. 199.

    Article  CAS  Google Scholar 

  18. Shol’ts, F., in Elektroanaliticheskie metody. Teoriya i praktika (Electroanalytical Methods: Theory and Practice), Moscow: Binom, 2006.

    Google Scholar 

  19. Szroeder, P., Physica E, 2011, vol. 44, p. 470.

    Article  CAS  Google Scholar 

  20. Miyazaki, H., Kubota, T., and Yamakawa, M., Bull. Chem. Soc. Jpn., 1972, vol. 45, p. 780.

    Article  CAS  Google Scholar 

  21. Nishikida, K., Kubota, T., Miyazaki, H., and Sakata, S., J. Magn. Reson., 1972, vol. 7, p. 260.

    CAS  Google Scholar 

  22. Muris, M., Dufau, N., Bienfait, M., Dupont-Pavlovsky, N., Grillet, Y., and Palmari, J.P., Langmuir, 2000, vol. 16, p. 7019.

    Article  CAS  Google Scholar 

  23. Ricca, A. and Bauschlicher, C.W., Chem. Phys., 2006, vol. 324, p. 455.

    Article  CAS  Google Scholar 

  24. Thomy, A.J., Chem. Phys., 1970, vol. 67, p. 1101.

    CAS  Google Scholar 

  25. Perdew, P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  Google Scholar 

  26. Laikov, N., Chem. Phys. Lett., 1997, vol. 281, p. 151.

    Article  CAS  Google Scholar 

  27. Krivenko, A.G., Komarova, N.S., Sviridova, L.N., and Stenina, E.V., Russ. J. Electrochem., 2009, vol. 45, p. 1064.

    Article  CAS  Google Scholar 

  28. Stenina, E.V., Sviridova, L.N., and Krivenko, A.G., Russ. J. Electrochem., 2011, vol. 47, p. 908.

    Article  CAS  Google Scholar 

  29. Krivenko, A.G., Komarova, N.S., Stenina, E.V., and Sviridova, L.N., Russ. J. Electrochem., 2012, vol. 48, p. 36.

    Article  CAS  Google Scholar 

  30. Nicholson, R.S. and Shain, J., Anal. Chem., 1964, vol. 36, p. 706.

    Article  CAS  Google Scholar 

  31. Nicholson, R.S. and Shain, J., Anal. Chem., 1965, vol. 37, p. 178.

    Article  CAS  Google Scholar 

  32. Galus, Z., Fundamentals of Electrochemical Analysis, New York: Harwood, 1976.

    Google Scholar 

  33. Golubev, V.A., Miklyush, R.V., and Rozantsev, E.G., Izv. Akad. Nauk SSSR. Ser. Khim., 1972, no. 3, p. 656.

    Google Scholar 

  34. Golubev, V.A. and Miklyush, R.V., Zh. Org. Khim., 1972, vol. 8, p. 1356.

    CAS  Google Scholar 

  35. Rontus, M. and Delmelic, M., C. R. Acad. Sci., Ser. D, 1973, vol. 227, p. 1069.

    Google Scholar 

  36. Katritzky, A.R., J. Chem. Soc., 1956, p. 2404.

    Google Scholar 

  37. Okamoto, T. and Tani, H., Chem. Pharm. Bull., 1959, vol. 7, p. 130.

    Article  CAS  Google Scholar 

  38. Okamoto, T. and Tani, H., Chem. Pharm. Bull., 1959, vol. 7, p. 925.

    Article  Google Scholar 

  39. Katritzky, A.R. and Lunt, E., Tetrahedron, 1969, vol. 25, p. 4291.

    Article  CAS  Google Scholar 

  40. Eisenthal, R. and Katritzky, A.R., Tetrahedron, 1965, vol. 21, p. 2205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kulakovskaya.

Additional information

Original Russian Text © S.I. Kulakovskaya, A.G. Krivenko, N.S. Komarova, A.V. Kulikov, A.F. Shestakov, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 1, pp. 3–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulakovskaya, S.I., Krivenko, A.G., Komarova, N.S. et al. Electrochemical and ESR study of the mechanism of oxidation of phenazine-di-N-oxide in the presence of cyclohexanol on glassy carbon and single-walled carbon nanotube electrodes. Russ J Electrochem 50, 1–12 (2014). https://doi.org/10.1134/S1023193514010066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514010066

Keywords

Navigation