Skip to main content
Log in

The Kramers-Moyal expansion for electrochemical stochastic diffusion

  • Short Communications
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

It is proved that there is a general stochastic equation, according to which any random process in the transient mode can be presented by spatially homogeneous Kramers-Moyal expansion. In the electrochemical stochastic diffusion, an integral of the fluctuation component of electrode potential over the time plays the role of spatial coordinate. Based on these two facts, we derived a spatially homogeneous Kramers-Moyal expansion for the propagator of electrochemical stochastic diffusion. By using the limiting transition to long observation times, we obtained a time and spatially homogeneous asymptotic Kramers-Moyal expansion for the propagator of asymmetric non-Gaussian electrochemical stochastic diffusion. Under the conditions of Gaussian electrochemical noise, the asymptotic Kramers-Moyal expansion turns into the Einstein stochastic diffusion equation. The method of determining time and spatially homogeneous asymptotic Kramers-Moyal expansion for the propagator of asymmetric non-Gaussian electrochemical stochastic diffusion may be useful in the stochastic theory of slow electrochemical discharge and in the electrochemical noise diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Risken, H., The Fokker-Planck equation. Methods of solution and applications, Berlin Heidelberg: Springer, 1989.

    Book  Google Scholar 

  2. Stratonovich, R.L., Topics in the theory of random noise, New York: Gordon & Breach, 1963, vol. 1.

    Google Scholar 

  3. Malakhov, A.N., Kumulyantnyi analiz sluchainykh negaussovykh protsessov i ikh preobrazovanii (Cumulant analysis of random non-Gaussian processes and their transformations), Moscow: Sov. Radio, 1978.

    Google Scholar 

  4. Kramers, H.A., Physica A, 1940, vol. 7, p. 284.

    CAS  Google Scholar 

  5. Moyal, J.E.J., J. Roy. Statist. Soc. Ser. B 1949, vol. 11, p. 150.

    Google Scholar 

  6. Grafov, B.M., Russ. J. Electrochem., 2012, vol. 48, p. 144.

    Google Scholar 

  7. Grafov, B.M., Russ. J. Electrochem., 2013, vol. 49, p. 850.

    Article  CAS  Google Scholar 

  8. Hughes, W.L., Nonlinear electrical networks, New York: Ronald Press, 1960.

    Google Scholar 

  9. Einstein, A., Ann. Phys., 1905, vol. 17, p. 549.

    Article  CAS  Google Scholar 

  10. Einstein, A., Ann. Phys., 1906, vol. 19, p. 371.

    Article  CAS  Google Scholar 

  11. Einstein, A., Z. Elektrochem., 1907, vol. 13, p. 98.

    Article  Google Scholar 

  12. Einstein, A., Z. Elektrochem., 1908, vol. 14, p. 235.

    Article  Google Scholar 

  13. Coffey, W.T., Kalmykov, Yu.P., and Waldron, J.T., The Langevin equation, New Jersey: World Scientific, 2005.

    Google Scholar 

  14. Kuznetsov, A.M., Stochastic and dynamic views of chemical reaction kinetics in solutions, Lausanne: Presses Polytechniques, 1999.

    Google Scholar 

  15. Timashev, S.F. and Polyakov, Yu.S., Fluctuation and Noise Letters, 2007, vol. 7, p. R15.

    Article  Google Scholar 

  16. Noise in nonlinear dynamic systems. V. 1. Theory of continuous Fokker-Planck systems, Moss, F. and McClintock, P.V.E., Eds., Cambridge: Cambridge Univ. Press, 1989.

    Google Scholar 

  17. Dubkov, A.A., Hanggi, P., and Goychuk, I., J. Stat. Mechanics, 2009, p. 01034.

    Google Scholar 

  18. Pitaevskii, L.P., Phys.-Usp., vol. 54, p. 625.

  19. Bochkov, G.N. and Kuzovlev, Yu.E., Physica A, 1981, vol. 106, p. 443.

    Article  Google Scholar 

  20. Jarzynski, C., Phys. Rev. Lett., 1997, vol. 78, p. 2690.

    Article  CAS  Google Scholar 

  21. Crooks, G.E., Phys. Rev. E: Stat. Phys., 2000, vol. 61, p. 2361.

    Article  CAS  Google Scholar 

  22. Crooks, G.E., Phys.Rev. E: Stat. Phys., 1999, vol. 60, p. 2731.

    Google Scholar 

  23. Uchaikin, V.V., Usp. Fiz. Nauk, 2003, vol. 173, p. 847.

    Article  Google Scholar 

  24. Fractional dynamics: Recent advances, Klafter, J., Lim, S.C., and Metzler, R., Eds., Singapore: World Scientific, 2012.

    Google Scholar 

  25. Sokolov, I.M. and Klafter, J., Chaos, 2005, vol. 15, p. 026103.

    Article  CAS  Google Scholar 

  26. Lindenberg, K., Sancho, J.M., Khoury, M., and Lacasta, A.M., Fluctuation and Noise Letters, 2012, vol. 11, p. 1240004.

    Article  Google Scholar 

  27. Frank, T.D., Nonlinear Fokker-Planck equations, Berlin: Springer, 2005, p. 404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Grafov.

Additional information

Original Russian Text © B.M. Grafov, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 1, pp. 102–104.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grafov, B.M. The Kramers-Moyal expansion for electrochemical stochastic diffusion. Russ J Electrochem 50, 92–94 (2014). https://doi.org/10.1134/S1023193514010042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514010042

Keywords

Navigation