Skip to main content
Log in

Computer simulation of active layers in double-layer supercapacitors: Galvanostatics, determination of effective coefficients, and calculation of overall characteristics

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A computer simulation of the structure and modes of functioning of biporous active layers (activated carbon) in double-layer capacitors (DLCs) was performed. The charging of DLCs in a galvanostatic mode was studied. The main characteristics of DLCs (charging time, specific capacity, stored energy, and power) were calculated. DLCs with aqueous electrolyte of different types were studied: active layer with the “ideal” structure (type 1), active layer with a monoporous structure (2), and biporous active layer (3). A computer simulation of biporous active layers of DLCs involves the formulation of a model of the structure of the active layer, percolation evaluation, and calculation of the effective ion conductivities of both highly porous carbon grains and the whole active layer. When calculating the characteristics of the active layers of DLC, we analyzed the effect of the main parameters (charge current density and active layer thickness) on the charging process and overall characteristics. The central problem of calculation of a DLC with a real, nonmonoporos structure was formulated. In active layers generally having pores of three types (micro-, meso-, and macropores) in the galvanostatic mode of DLC charging, the wide pores are polarized first. In this case, the limiting acceptable potential is achieved, and galvanostatic charging should be stopped and changed to potentiostatic charging. As a result, a large number of micropores can remain unpolarized. Therefore, it is important to perform a theoretical search for means to carry out complete adsorption of ions in micropores and obtain high specific capacities of DLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conway, B.E., Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications, New York: Kluwer Academic/Plenum, 1999.

    Google Scholar 

  2. Conway, B.E., J. Electrochem. Soc., 1991, vol. 138, p. 1539.

    Article  CAS  Google Scholar 

  3. Vol’fkovich, Yu.M. and Serdyuk, T.M., Russ. J. Electrochem., 2002, vol. 38, p. 935.

    Article  Google Scholar 

  4. Pillay, B. and Newman, J., J. Electrochem. Soc., 1996, vol. 143, p. 1806.

    Article  CAS  Google Scholar 

  5. Lin, C., Ritter, J.A., Popov, B.N., and White, R.E., J. Electrochem. Soc., 1999, vol. 146, p. 3168.

    Article  CAS  Google Scholar 

  6. Vol’fkovich, Yu.M., Mazin, V.M., and Urisson, N.A., Russ. J. Electrochem., 1998, vol. 34, p. 740.

    Google Scholar 

  7. Ksenzhek, O.S. and Stender, V.V., Dokl. Akad. Nauk SSSR, 1956, vol. 106, p. 487.

    CAS  Google Scholar 

  8. Ksenzhek, O.S. and Stender, V.V., Zh. Fiz. Khim., 1957, vol. 31, p. 117.

    CAS  Google Scholar 

  9. Ksenzhek, O.S., Zh. Fiz. Khim., 1963, vol. 37, p. 2007.

    CAS  Google Scholar 

  10. de Levie, R., Electrochim. Acta, 1963, vol. 8, p. 751.

    Article  Google Scholar 

  11. Bonnemay, M., Bronoel, G., Levart, E., Pilla, A.A., and d’A. d’Orsay, E.P., C. R. Acad. Sci., 1964, vol. 258, p. 4256.

    CAS  Google Scholar 

  12. Posey, F.A. and Morozumi, T., J. Electrochem. Soc., 1966, vol. 113, p. 176.

    Article  CAS  Google Scholar 

  13. Metody issledovaniya struktury vysokodispersnykh i poristykh tel (Methods for Investigating the Structure of Highly Disperse and Porous Solids), Moscow, 1953.

  14. Ershler, A.B., in Elektrosintez i bioelektrokhimiya (Electrosynthesis and Bioelectrochemistry), Moscow, 1975, pp. 199–251.

    Google Scholar 

  15. Ksenzhek, O.S., Shembel’, E.M., Kalinovskii, E.A., and Shustov, V.A., Elektrokhimicheskie protsessy v sistemakh s poristymi matritsami (Electrochemical Processes in Systems with Porous Matrices), Kiev, 1983.

    Google Scholar 

  16. Daniel’-Bek, V.S., Zh. Fiz. Khim., 1948, vol. 22, p. 697.

    Google Scholar 

  17. Darling, H.E., J. Chem. Eng. Data, 1964, vol. 9, p. 421.

    Article  CAS  Google Scholar 

  18. Fialkov, A.S., Russ. J. Electrochem., 2000, vol. 36, p. 345.

    Article  CAS  Google Scholar 

  19. New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, Barsukov, I.V., Johnson, C.S., Doninger, J.E., and Barsukov, V.Z., Eds., Dordrecht: Springer, 2006.

    Google Scholar 

  20. Pandolfo, A.G. and Hollenkamp, A.F., J. Power Sources, 2006, vol. 157, p. 11.

    Article  CAS  Google Scholar 

  21. Rychagov, A.Yu., Extended Abstract of Cand. Sci. Dissertation, Moscow, 2008.

    Google Scholar 

  22. Simon, P. and Gogotsi, Y., Philos. Trans. R. Soc., A, 2010, vol. 368, p. 3457.

    Article  CAS  Google Scholar 

  23. Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2001.

    Google Scholar 

  24. Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk, 1995.

    Google Scholar 

  25. Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. Texture of Disperse and Porous Materials), Novosibirsk, 1999.

    Google Scholar 

  26. Dubinin, M.M., Usp. Khim., 1955, vol. 24, p. 3.

    CAS  Google Scholar 

  27. Kinle, H. and Bader, E., Aktivnye ugli i ikh promyshlennoe primenenie (Active Coals and Their Commercial Use), Leningrad: Khimiya, 1984.

    Google Scholar 

  28. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2003, vol. 39, p. 622.

    Article  CAS  Google Scholar 

  29. Chirkov, Yu.G., Russ. J. Electrochem., 1999, vol. 35, p. 1281.

    CAS  Google Scholar 

  30. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Russ. J. Electrochem., 2006, vol. 42, p. 715.

    Article  CAS  Google Scholar 

  31. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Russ. J. Electrochem., 2011, vol. 47, p. 71.

    Article  CAS  Google Scholar 

  32. Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Original Russian Text © Yu.G. Chirkov, V.I. Rostokin, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 1, pp. 16–31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Computer simulation of active layers in double-layer supercapacitors: Galvanostatics, determination of effective coefficients, and calculation of overall characteristics. Russ J Electrochem 50, 13–26 (2014). https://doi.org/10.1134/S1023193514010030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514010030

Keywords

Navigation