Skip to main content
Log in

Electrocatalytic oxidation of captopril using a carbon-paste electrode modified with copper-cobalt hexacyanoferrate

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A carbon-paste electrode was modified with copper-cobalt hexacyanoferrate by consecutive potential cycling. The kinetic parameters were calculated for the electroactive species. The resulting electrode exhibited electrocatalytic activity towards the oxidation of captopril. The kinetics of the electrocatalytic reaction was studied. A linear relationship was observed between anodic current and the concentration of captopril in the range of 5.0 × 10−6–3.1 × 10−5 μM with a detection limit of 4.2 μM (S/N = 3). The modified electrode was used in the analysis of captopril tablets successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Festa, M.A., Anderson, R.B., Nackley, J.F., and Hollenberg, N.K., New. Engl. J. Med., 1993, vol. 328, p. 907.

    Article  Google Scholar 

  2. Forey, K., Analytical Profiles of Drug Substances, New York: Academic Press, 1982, vol. 11.

  3. Aykin, N., Neal, R., Yusof, M., and Ercal, N., Biomed. Chromatogr., 2001, vol. 15, p. 427.

    Article  CAS  Google Scholar 

  4. Pimenta, A.M., Araujo, A.N., and Montenegro, M.C., Anal. Chim. Acta, 2001, vol. 438, p. 31.

    Article  CAS  Google Scholar 

  5. Mirza, T. and Tan, H.S.I., J. Pharm. Biomed. Anal., 2001, vol. 25, p. 39.

    Article  CAS  Google Scholar 

  6. Golik, A., Modai, D., Averbukh, D., Sheffy, M., Shamis, A., Cohen, N., Shaked, U., and Dolev, E., Metabolism, 1990, vol. 39, p. 665.

    Article  CAS  Google Scholar 

  7. Hillaert, S. and Van den Bossche, W., J. Pharmaceut. Biomed. Anal., 1999, vol. 21, p. 65.

    Article  CAS  Google Scholar 

  8. Carru, C., Deiana, L., Sotgia, S., Pes, G.M., and Zinellu, A., Electrophoresis, 2004, vol. 25, p. 882.

    Article  CAS  Google Scholar 

  9. Panderi, I. and Parissi-Poulou, M., Int. J. Pharm., 1992, vol. 86, vol. 99.

  10. Chen, W., Tang, J., Cheng, H.-J., and Xia, X.-H., Talanta, 2009, vol. 80, p. 539.

    Article  CAS  Google Scholar 

  11. Rezaei, B. and Damiri, S., Sens. Actuators, Ser. B, 2008, vol. 134, p. 324.

    Article  CAS  Google Scholar 

  12. Ojani, R., Raoof, J.-B., and Norouzi, B., Electroanalysis, 2008, vol. 20, p. 1996.

    Article  CAS  Google Scholar 

  13. Shahrokhian, S., Karimi, M., and Khajehsharifi, H., Sens. Actuators, Ser. B, 2005, vol. 109, p. 278.

    Article  CAS  Google Scholar 

  14. Bahramipur, H. and Jalali, F., Int. J. Electrochem., 2011, doi:10.4061/2011/864358.

    Google Scholar 

  15. Ensafi, A.A., Karimi-Maleh, H., Ghiaci, M., and Arshadi, M., J. Mater. Chem., 2011, vol. 21, p. 15022.

    Article  CAS  Google Scholar 

  16. Karimi-Maleh, H., Ensafi, A.A., and Allafchian, A.R., J. Solid Slate Electrochem., 2010, vol. 14, p. 9.

    Article  CAS  Google Scholar 

  17. Neff, V.D., J. Electrochem. Soc., 1978, vol. 125, p. 886.

    Article  CAS  Google Scholar 

  18. Itaya, K., Ataka, T., and Toshima, S., J. Am. Chem. Soc., 1982, vol. 104, p. 3751.

    Article  CAS  Google Scholar 

  19. Dostal, A., Meyer, B., Scholz, F., Schroder, U., Bond, A.M., Marken, F., and Shaw, S.J., J. Phys. Chem., 1995, vol. 99, p. 2096.

    Article  CAS  Google Scholar 

  20. Carpenter, M.K. and Conell, R.S., J. Electrochem. Soc., 1990, vol. 137, p. 2464.

    Article  CAS  Google Scholar 

  21. Gao, Z.Q., Zhou, X.Y., Wang, G.Q., Li, P.B., and Zhao, Z.F., Anal. Chim. Acta, 1991, vol. 244, p. 39.

    Article  CAS  Google Scholar 

  22. Cai, C.X., Xue, K.H., and Xu, S.M., J. Electroanal. Chem., 2000, vol. 486, p. 111.

    Article  CAS  Google Scholar 

  23. Engel, D. and Grabner, E.W., Ber. Bunsenges. Phys. Chem., 1985, vol. 89, p. 982.

    Article  CAS  Google Scholar 

  24. Siperko, L.M. and Kuwana, T., J. Electrochem. Soc., 1983, vol. 130, p. 396.

    Article  CAS  Google Scholar 

  25. Reddy, S.J., Dostal, A., and Scholz, F., J. Electroanal. Chem., 1996, vol. 403, p. 209.

    Article  Google Scholar 

  26. Cui, X., Hong, L., and Lin, X., J. Electroanal. Chem., 2002, vol. 526, p. 115.

    Article  CAS  Google Scholar 

  27. Abbaspour, A. and Kamyabi, M.A., J. Electroanal Chem., 2005, vol. 576, p. 73.

    Article  CAS  Google Scholar 

  28. Abbaspour, A. and Ghaffarinejad, A., Electrochim. Acta, 2008, vol. 53, p. 6643.

    Article  CAS  Google Scholar 

  29. Prabhu, P., Suresh Babu, R., and Sriman Narayanan, S., Sens. Actuators, Ser. B, 2011, vol. 156, p. 606.

    Article  CAS  Google Scholar 

  30. Liu, Y., Yang, Z., Zhong, Y., and Yu, J., Appl. Surf. Sci., 2010, vol. 256, p. 3148.

    Article  CAS  Google Scholar 

  31. Oiye, E.N., Figueiredo, N.B., Andrade, J.F., Tristao, H.M., and Oliveira, M.F., Forensic Sci. Int., 2009, vol. 192, p. 94.

    Article  CAS  Google Scholar 

  32. Tsai, T.H., Chen, T.W., Chen, S.M., and Sarawathi, R., Russ. J. Electrochem., 2012, vol. 48, p. 291.

    Article  CAS  Google Scholar 

  33. Svancara, I., Vytras, K., Kalcher, K., Walcarius, A., and Wang, J., Electroanalysis, 2009, vol. 21, p. 7.

    Article  CAS  Google Scholar 

  34. Bontchev, P.R., Gochev, G., Evtimova, B., and Kadum, H., J. Inorg. Biochem., 1992, vol. 46, p. 23.

    Article  Google Scholar 

  35. Scholz, F. and Dostal, A., Angew. Chem., Int. Ed. Engl., 1995, p. 2685.

    Google Scholar 

  36. Bard, A. and Faulkner, L., Electrochemical Methods: Principles and Applications, New York: John Wiley & Sons, 2001.

    Google Scholar 

  37. Laviron, E., J. Electroanal. Chem., 1979, vol. 101, p. 1.

    Article  Google Scholar 

  38. Wang, J., Analytical Electrochemistry, New York: VCH, 1994.

    Google Scholar 

  39. Galus, Z., Fundamentals of Electrochemical Analysis, New York: Ellis Horwood, 1976.

    Google Scholar 

  40. Shi, G., Lu, J., Xu, F., Sun, W., Jin, L., Yamamoto, K., Tao, S., and Jin, J., Anal. Chim. Acta, 1999, vol. 391, p. 307.

    Article  CAS  Google Scholar 

  41. Shankaran, D.R. and Narayanan, S.S., Bull. Electrochem., 2001, vol. 17, p. 277.

    CAS  Google Scholar 

  42. Zhou, J. and Wang, E., Electroanalysis, 1994, vol. 6, p. 29.

    Article  CAS  Google Scholar 

  43. Liu, Y. and Xu, L., Sensors, 2007, vol. 7, p. 2446.

    Article  CAS  Google Scholar 

  44. Arduini, F., Cassisi, A., Amine, A., Ricci, F., Moscone, D., and Palleschi, G., J. Electroanal. Chem., 2009, vol. 626, p. 66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahimeh Jalali.

Additional information

Published in Russian in Elektrokhimiya, 2014, Vol. 50, No. 5, pp. 539–547.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalali, F., Ranjbar, S. Electrocatalytic oxidation of captopril using a carbon-paste electrode modified with copper-cobalt hexacyanoferrate. Russ J Electrochem 50, 482–489 (2014). https://doi.org/10.1134/S1023193513120082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193513120082

Keywords

Navigation