Skip to main content
Log in

The effect of temperature and oxygen partial pressure on the reduction mechanism in the Pr2CuO4/Ce0.9Gd0.1O1.95 system

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of a porous electrode based on Pr2CuO4 (PCO) screen printed on the surface of Ce0.9Gd0.1O1.95 (CGO) solid electrolyte is studied by impedance spectroscopy. The rate-determining stages of the oxygen reduction reaction at the PCO/CGO interface are found for the oxygen partial pressure interval of 30–105 Pa and temperatures of 773–1173 K. Changeover of the rate-determining stage of electrode reaction is shown to occur depending on the temperature and the oxygen partial pressure. The PCO electrode polarization resistance is 1.7 Ω cm2 at 973 K in air and remains constant at thermocycling of the electrochemical cell in the temperature range of 773–1173 K. Based on the found data, PCO can be considered as the promising cathodic material for solid-oxide fuel cells operating at moderate temperatures (773–973 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele, B.C.H. and Heinzel, A., Nature, 2001, vol. 414, p. 345.

    Article  CAS  Google Scholar 

  2. Jacobson, A.J., Chem. Mater., 2010, vol. 22, p. 660.

    Article  CAS  Google Scholar 

  3. Orera, A. and Slater, P.R., Chem. Mater., 2010, vol. 22, p. 675.

    Article  CAS  Google Scholar 

  4. Aguadero, A., Fawcett, L., Taub, S., Woolley, R., Wu, K.T., Xu, N., Kilner, J.A., and Skinner, S.J., J. Mater. Sci., 2012, vol. 47, p. 3925.

    Article  CAS  Google Scholar 

  5. Mazo, G.N., Kaluzhskikh, M.S., Savvin, S.N., Leonova, L.S., Lyskov, N.V., and Dobrovol’skii, Yu.A., Russ. J. Electrochem., 2009, vol. 45, p. 450.

    Article  CAS  Google Scholar 

  6. Soorie, M. and Skinner, S.J., Solid State Ionics, 2006, vol. 177, p. 2081.

    Article  CAS  Google Scholar 

  7. Li, Q., Zhao, H., Huo, L., Sun, L., Cheng, X., and Grenier, J.C., Electrochem. Commun., 2007, vol. 9, p. 1508.

    Article  CAS  Google Scholar 

  8. Lyskov, N.V., Leonova, L.S., and Mazo, G.N., Russ. J. Electrochem., 2011, vol. 47, p. 586.

    Article  CAS  Google Scholar 

  9. Li, Q., Zeng, X., Sun, L., Zhao, H., Huo, L., and Grenier, J.C., Int. J. Hydrogen Energy, 2012, vol. 37, p. 2552.

    Article  CAS  Google Scholar 

  10. George, A.M., Gopalakrishnan, I.K., and Karkhanavala, M.D., Mater. Res. Bull., 1974, vol. 9, p. 721.

    Article  CAS  Google Scholar 

  11. Kaluzhskikh, M.S., Kazakov, S.M., Mazo, G.N., Istomin, S.Ya., Antipov, E.V., Gippius, A.A., Fedotov, Yu., Bredikhin, S.I., Liu, Y., Svensson, G., and Shen, Z., J. Solid State Chem., 2011, vol. 184, p. 698.

    Article  CAS  Google Scholar 

  12. Hayashi, H., Kanoh, M., Quan, C.J., Inaba, H., Wang, S., Dokiya, M., and Tagawa, H., Solid State Ionics, 2000, vol. 132, p. 227.

    Article  CAS  Google Scholar 

  13. Stoinov, Z.B., Grafov, B.M., Savova-Stoinova, B.S., and Elkin, V.V., Elektrokhimicheskii impedans (Electrochemical Impedance), Moscow: Nauka, 1991.

    Google Scholar 

  14. Takeda, Y., Kanno, R., Noda, M., Tomida, Y., and Yamamoto, O., J. Electrochem. Soc., 1987, vol. 134, p. 2656.

    Article  CAS  Google Scholar 

  15. Adler, S.B., Lane, J.A., and Steele, B.C.H., J. Electrochem. Soc., 1996, vol. 143, p. 3554.

    Article  CAS  Google Scholar 

  16. Steele, B.C.H., Hori, K.M., and Uchino, S., Solid State Ionics, 2000, vol. 135, p. 445.

    Article  CAS  Google Scholar 

  17. Van Heuveln, F.H., Bouwmeester, H.J.M., and Van Berkel, F.P.F., J. Electrochem. Soc., 1997, vol. 144, p. 134.

    Article  Google Scholar 

  18. Esquirol, A., Brandon, N.P., Kilner, J.A., and Mogensen, M., J. Electrochem. Soc., 2004, vol. 151, p. A1847.

    Article  CAS  Google Scholar 

  19. Amin, R. and Karan, K., J. Electrochem. Soc., 2010, vol. 157, p. B285.

    Article  CAS  Google Scholar 

  20. Mauvy, F., Lalanne, C., Bassat, J.M., Grenier, J.C., Zhao, H., Huo, L., and Stevens, P., J. Electrochem. Soc., 2006, vol. 153, p. A1547.

    Article  CAS  Google Scholar 

  21. Sayers, R., Rieu, M., Lenormand, P., Ansart, F., Kilner, J.A., and Skinner, S.J., Solid State Ionics, 2011, vol. 192, p. 531.

    Article  CAS  Google Scholar 

  22. Murray, E.P. and Barnett, S.A., Solid State Ionics, 2001, vol. 143, p. 265.

    Article  Google Scholar 

  23. Jiang, S. and Wang, W., J. Electrochem. Soc., 2005, vol. 152, p. A1398.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Lyskov.

Additional information

Original Russian Text © N.V. Lyskov, G.N. Mazo, L.S. Leonova, L.M. Kolchina, S.Ya. Istomin, E.V. Antipov, 2013, published in Elektrokhimiya, 2013, Vol. 49, No. 8, pp. 834–839.

This publication was prepared on the basis of a report delievered at the XI Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyskov, N.V., Mazo, G.N., Leonova, L.S. et al. The effect of temperature and oxygen partial pressure on the reduction mechanism in the Pr2CuO4/Ce0.9Gd0.1O1.95 system. Russ J Electrochem 49, 747–752 (2013). https://doi.org/10.1134/S1023193513080120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193513080120

Keywords

Navigation