Skip to main content
Log in

Estimation of MEA parameters and prediction of PEM fuel cells electrical performances using numerical modelling

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, a coupled model of transfer phenomena within Proton Exchange Membrane Fuel Cell (PEMFC) developed from Stefan-Maxwell (in the diffusion and active layers), Butler-Volmer (in the active layer), and water mass transport (in the electrolyte membrane) equations is presented. This modeling allows interpreting experimental results, prediction of PEMFC electrical performances and guiding perspective investigations on optimization of PEMFC. The model helps the research of dominating sensitivity parameters, as well as the estimation of some badly known MEA (Membrane Electrode Assembly) parameters using fuel cell tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D ij :

binary diffusion coefficient of species i to j (m2 s−1)

D eff ij :

effective diffusion coefficient of species i to j (m2 s−1)

D m :

effective diffusion coefficient of water in the membrane (m2 s−1)

EW:

equivalent weight (kg mol−1)

ΔG 0*:

activation energy (J mol−1)

E 0 :

standard potential (V)

E cell :

cell potential (V)

L :

thickness (m)

F :

Faraday’s constant (96485 C mol−1)

J i :

density of molar flux (mol m−2 s−1)

M i :

molar weight (kg mol−1)

n :

number of electrons being transferred for one act of the overall reaction

y i :

molar rate of the gas species i

R :

universal gas constant (8.314 J mol−1 K−1)

T :

cell temperature (K)

i 0 :

exchange current density (A m−2)

i :

current density (A m−2)

P :

pressure (Pa)

P sat :

saturated vapor pressure (Pa)

ρdry :

dry Nafion® density (kg m−3)

f v :

roughness factor

ɛ:

porosity

τ:

tortuosity

α:

transfer coefficient

κ:

protonic conductivity (S m−1)

λ:

water content in the membrane (−)

η:

over potential (V)

a:

anode

c:

cathode

m:

membrane

hum:

humidification

cell:

cell

eff:

effective

DL:

diffusion layer

CL:

anodic active layer

ref:

reference

H2 :

hydrogen

H2O:

water

O2 :

oxygen

N2 :

nitrogen

References

  1. Berg, P., Promislow, K., Pierre, J.St. and Stumper, J., J. Electrochem. Soc., 2004, vol. 37, p. 341.

    Article  Google Scholar 

  2. Bemardi, D.M. and Verbrugge, M.W., AIChE J., 1991, vol. 37, p. 1151.

    Article  Google Scholar 

  3. Fuller, T. and Newman, J., J. Electrochem. Soc., 1993, vol. 140, p. 1218.

    Article  CAS  Google Scholar 

  4. Nguyen, T.V. and White, R.E., J. Electrochem. Soc., 1993, vol. 140, p. 2178.

    Article  CAS  Google Scholar 

  5. Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., J. Electrochem. Soc., 1991, vol. 138, p. 2334.

    Article  CAS  Google Scholar 

  6. Beming, T., Lu, D.M., and Djilali, N., J. Power Sources, 2002, vol. 106, p. 284.

    Article  Google Scholar 

  7. Yi, J.S. and Nguyen, T.V., J. Electrochem. Soc., 1999, vol. 146, p. 38.

    Article  CAS  Google Scholar 

  8. Um, S., Wang, C.-Y., and Chen. K.S., J. Electrochem. Soc., 2000, vol. 147, p. 4485.

    Article  CAS  Google Scholar 

  9. Sivertsen, B.R. and Djilali, N., J. Power Sources, 2005, vol. 141, pp. 65–78.

    Article  CAS  Google Scholar 

  10. Thampan, T., Malhotra, S., Tang, H, and Datta, R., J. Electrochem. Soc., 2000, vol. 147, pp. 3242–3250.

    Article  CAS  Google Scholar 

  11. Suares, G.E. and Hoo, K.A., Chem. Eng. Sci., 2000, vol. 55, p. 2237.

    Article  CAS  Google Scholar 

  12. Guo, Q., Sethuraman, V.A., and White, R.A., J. Electrochem. Soc., 2004, vol. 151, p. 983.

    Article  Google Scholar 

  13. Bemadi, S.M. and Verbrugge. M.W., Journal of the Electrochemical Society, 1992, vol. 139, p. 2477.

    Article  Google Scholar 

  14. Okada, T., Journal of the Electrochemical Society, 1993, vol. 140, p. 2178.

    Article  Google Scholar 

  15. Okada, T., Xie, G., and Y. Tanabe, J. Electroanal. Chem., 1996, vol. 413, p. 49.

    Article  Google Scholar 

  16. Costamagna, P., Chemical Engineering Science, 2001, vol. 56, p. 323.

    Article  CAS  Google Scholar 

  17. Gurau, V., Liu, H., and Kakac, S., AIChE J., 1998, vol. 44, p. 2410.

    Article  CAS  Google Scholar 

  18. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport of Phenomena, 2nd ed., New York: John Wiley & Sons, 2002.

    Google Scholar 

  19. Hinatsu, J.T., Mizuhata, M., and Takenaka. H., J. Electrochem. Soc., 1994, vol. 141, p. 1493.

    Article  CAS  Google Scholar 

  20. Neubrand, W., Thesis, Modelbilung und Simulation von Elektromem branverfahren, Logos, 1999.

    Google Scholar 

  21. Hamann, C.H., Hamnett, A., and Vielstich, W., Electrochemistry, Wiley-VCH, 1998.

    Google Scholar 

  22. Liu, Z., Wainright, J.S., Litt M.H., and Savinell, R.F., Electrochimica Acta, 2006, vol. 51, p. 3914.

    Article  CAS  Google Scholar 

  23. Gasteiger, H.A., Gu, W., Makharia, R., and Matthias, M.F., Electrochemical Society Meeting, Orlando, FL, 2003.

    Google Scholar 

  24. Amphlett, J.C., Baumert, R.M., Mann, R.F., Peppley, B.A., Roberge, P.R., and Rodrigues, A., J. Power Sources, 1994, vol. 49, p. 349.

    Article  CAS  Google Scholar 

  25. Parthasarathy, A., Srinivasan, S., Appleby, A.J., and Martin, C.R., Journal of the Electrochemical Society, 1992, vol. 139, p. 2530.

    Article  CAS  Google Scholar 

  26. Diard, J.P., Le Gorrec, B., and Montella, C., Cinétique électrochimique, Hermann, Paris, 1996.

    Google Scholar 

  27. Chan, S.H. and Tun, W.A., Chem. Eng. Technol., 2001, vol. 24, p. 51.

    Article  CAS  Google Scholar 

  28. Yin, K.M., Journal of the Electrochemical Society, 2005, vol. 152, p. A586.

    Google Scholar 

  29. Wöhr, M., Bolwin, K., Schnumberger, W., Fischer, M., Neubrand, W., and Eigenberger, G., Int. J. Hydrogen Energy, 1998, vol. 23, p. 213.

    Article  Google Scholar 

  30. Bevers, D., Wohr, M., Yasuda, K., and K. Oguro., J. Appl. Electrochem., 1997, vol. 27, p. 1254.

    Article  CAS  Google Scholar 

  31. Ju, H., Meng, H., and Wang, C.Y., Int. J. Heat Mass Transfer, 2005, vol. 48, p. 1303.

    Article  CAS  Google Scholar 

  32. Corrêa, J.M., Farret, F.A., Popov, V.A., and Simoes, M.G., IEEE Trans. Energy Conversion, 2005, vol. 20, p. 211.

    Article  Google Scholar 

  33. Kadjo, A.J.-J., Brault, P., Caillard, A., Coutanceau, C., Gamier, J.-P., and Martemianov, S., J. Power Sources, 2007, vol. 172, p. 613.

    Article  CAS  Google Scholar 

  34. Kadjo, A.J-J., Gamier, J.-P., Maye, J.-P., Relot, F., and Martemianov, S., Russian J. Electrochem., 2006, vol. 42, p. 525.

    Article  Google Scholar 

  35. Yao, K.Z., Karan, K., Auley, K.B., Oosthuizen, P., Peppley, B., and Xie, T., Fuel Cells, 2004, vol. 4, p. 3.

    Article  CAS  Google Scholar 

  36. Vielstich, W., Lamm, A., and Gasteiger, H.A., Hand-book of Fuel Cells: Fundamentals, technology, and Applications Wiley, England: Chichester, 2003.

    Google Scholar 

  37. Wang, L., Husar, A., Zhou, T., and Liu, H., International J. Hydrogen Energy, 2003, vol. 28, p. 1263.

    Article  CAS  Google Scholar 

  38. Siegel, N.P., Ellis, M.W., Nelson, D.J., and Von Spakovsky, M.R., J. Power Sources, 2003, vol. 128, p. 173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. -J. Kadjo.

Additional information

Published in Russian in Elektrokhimiya, 2013, Vol. 49, No. 4, pp. 355–366.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadjo, A.J.J., Martemianov, S. & Chabriat, J.P. Estimation of MEA parameters and prediction of PEM fuel cells electrical performances using numerical modelling. Russ J Electrochem 49, 313–323 (2013). https://doi.org/10.1134/S1023193513040083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193513040083

Keywords

Navigation