Skip to main content
Log in

Development and experimental verification of a mathematical model of lithium ion battery

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A model of the lithium ion battery is developed which takes into account intercalation and extraction of lithium ions in the active mass of negative and positive electrodes, the dependences of equilibrium electrode potentials on the concentration of intercalated lithium, the ion transfer in pores of electrodes and the separator, the kinetics of electrode reactions, and the electric double layer charging. As the active material for the negative electrode, UAMS graphite material is used. Lithium-nickel-cobalt oxide serves as the positive electrode. The porous structure of electrodes is studied by the method of standard contact porosimetry. Sufficiently high porosity values found for both electrodes (50% for anode and 27% for cathode) made it possible to consider the interface as regards the internal pore surface found from porosimetry data rather than as regards their external surface as in the previous studies. A comparison of calculated and experimental discharge curves demonstrates their closeness, which points to the correctness of the model. By the fitting procedure, the coefficients of solid-state diffusion of lithium ions and the rate constants for reactions on both electrodes are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whittingham, M.S., Electrical Energy Storage and Intercalation Chemistry, Science, 1976, vol. 192, p. 1126.

    CAS  Google Scholar 

  2. Takehara, Z., J. Power Sources, 1989, vol. 26, p. 257.

    Article  CAS  Google Scholar 

  3. Broussely, M., Biensan, P., and Simon, B., Electrochim. Acta, 1999, vol. 45, p. 3.

    Article  CAS  Google Scholar 

  4. Doyle, M., Fuller, T., and Newman, J., J. Electrochem. Soc., 1993, vol. 140, p. 1526.

    Article  CAS  Google Scholar 

  5. Vol’fkovich, Yu.M., Petrii, O.A., Zaitsev, A.A., and Kovrigina, I.V., Vestn. Mosk. Univ., Ser. 2: Khim., 1988, vol. 29, p. 173.

    Google Scholar 

  6. Volfkovich, Y.M., Bagotzky, V.S., Zolotova, T.K., and Pisarevskaya, E.Y., Electrochim. Acta, 1996, vol. 41, p. 1905.

    Article  CAS  Google Scholar 

  7. Volfkovich, Y.M., Sergeev, A.G., Zolotova, T.K., Afanasiev, S.D., Efimov, O.N., and Krinichnaya, E.P., Electrochim. Acta, 1998, vol. 44, p. 1543.

    Article  Google Scholar 

  8. Fuller, T.F., Doyle, M., and Newman, J., J. Electrochem. Soc., 1994, vol. 141, p. 1.

    Article  CAS  Google Scholar 

  9. Chen, Y. and Evans, J.W., J. Electrochem. Soc., 1996, vol. 143, p. 2708.

    Article  CAS  Google Scholar 

  10. Chen, Y. and Evans, J.W., Electrochim. Acta, 1994, vol. 39, p. 517.

    Article  CAS  Google Scholar 

  11. Fuller, T.F., Doyle, M., and Newman, J., J. Electrochem. Soc., 1994, vol. 141, p. 982.

    Article  CAS  Google Scholar 

  12. Ong, I.J. and Newman, J., J. Electrochem. Soc., 1999, vol. 146, p. 4360.

    Article  CAS  Google Scholar 

  13. Kumaresan, K., Guo, Q., Ramadass, P., and White, R.E., J. Power Sources, 2006, vol. 158, p. 679.

    Article  CAS  Google Scholar 

  14. Ploehn, H.J., Ramadass, P., and White, R.E., J. Electrochem. Soc., 2004, vol. 151, p. 456.

    Article  Google Scholar 

  15. Ramadass, P., Ploehn, H.J., and White, R.E., Electrochem. Soc. Interface, 2003, vol. 12, p. 65.

    Google Scholar 

  16. Smith, K. and Wang, C.Y., J. Power Sources, 2006, vol. 161, p. 628.

    Article  CAS  Google Scholar 

  17. Bernardi, D.M. and Go, J.Y., J. Power Sources, 2011, vol. 196, p. 412.

    Article  CAS  Google Scholar 

  18. Smith, K.A., Rahn, C.D., and Wang, C.Y., Energy Conversion and Management, 2007, vol. 48, p. 2565.

    Article  CAS  Google Scholar 

  19. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 1960.

    Google Scholar 

  20. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (Macrokinetics of Processes in Porous Media), Moscow: Nauka, 1971.

    Google Scholar 

  21. Newman, J. and Tiedemann, W., AIChE J., 1975, vol. 21, p. 25.

    Article  CAS  Google Scholar 

  22. Verbrugge, M.W. and Koch, B.J., J. Electrochem. Soc., 1996, vol. 143, p. 24.

    Article  CAS  Google Scholar 

  23. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Russ. J. Electrochem., 2011, vol. 47, p. 288.

    Article  CAS  Google Scholar 

  24. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Russ. J. Electrochem., 2011, vol. 47, p. 299.

    Article  CAS  Google Scholar 

  25. Verbrugge, M.W. and Koch, B.J., J. Electrochem. Soc., 1996, vol. 143, p. 600.

    Article  CAS  Google Scholar 

  26. Verbrugge, M.W. and Koch, B.J., J. Electrochem. Soc., 1999, vol. 146, p. 833.

    Article  CAS  Google Scholar 

  27. Doyle, M. and Newman, J., J. Appl. Electrochem., 1997, vol. 27, p. 846.

    Article  CAS  Google Scholar 

  28. Mao, Z. and White, R.E., J. Electrochem. Soc., 1994, vol. 141, p. 151.

    Article  CAS  Google Scholar 

  29. Botte, G.G., Subramanian, V.R., and White, R.E., Electrochim. Acta, 2000, vol. 45, p. 2595.

    Article  CAS  Google Scholar 

  30. Doyle, M. and Newman, J., J. Power Sources, 1995, vol. 54, p. 46.

    Article  CAS  Google Scholar 

  31. Volfkovich, Y.M. and Bagotzky, V.S., J. Power Sources, 1994, vol. 48, p. 327.

    Article  CAS  Google Scholar 

  32. Volfkovich, Y.M., Bagotzky, V.S., Sosenkin, V.E., and Shkolnikov, E.I., Soviet Electrochem., 1980, vol. 16, p. 1325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Sosenkin.

Additional information

Original Russian Text © D.A. Bograchev, Yu.M. Vol’fkovich, V.S. Dubasova, A.F. Nikolenko, T. A. Ponomareva, V.E. Sosenkin, 2013, published in Elektrokhimiya, 2013, Vol. 49, No. 2, pp. 129–137.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bograchev, D.A., Vol’fkovich, Y.M., Dubasova, V.S. et al. Development and experimental verification of a mathematical model of lithium ion battery. Russ J Electrochem 49, 115–123 (2013). https://doi.org/10.1134/S1023193513020031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193513020031

Keywords

Navigation