Skip to main content
Log in

Fabrication of a high sensitive glycine electrochemical sensor based on immobilization of nanostructured Ni chelidamic acid and bimetallic Au-Pt inorganic-organic hybrid nanocomposite onto glassy carbon modified electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this research a novel nickel complex was used as electrocatalyst for electrooxidation of glycine. A nano-structured nickel chelidamic acid was electrodeposited on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified electrode. The electrode possesses a three-dimensional (3D) porous network nanoarchitecture, in which the bimetallic Au-Pt NPs serving as metal nanoparticle based microelectrode ensembles are distributed in the matrix of interlaced 3,3′,5,5′-tetramethylbenzidine (TMB) organic nanofibers (NFs). Electrocatalytic oxidation of glycine on the surface of modified electrode was investigated with cyclic voltammetry method and the results showed that the nickel chelidamic acid films displayed excellent electrochemical catalytic activities towards glycine oxidation. The hydrodynamic amperometry at rotating modified electrode at constant potential versus reference electrode was used for detection of glycine. Under optimized conditions the calibration plots are linear in the concentration range 1 μM-0.75 mM and detection limit was found to be 0.3 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meijer, A.J. and Dubbelhuis, P.F., Biochem. Biophys. Res. Commun., 2004, vol. 313, pp. 397–403.

    Article  CAS  Google Scholar 

  2. Tome, D., Br. J. Nutr., 2004, vol. 92, pp. S27–S30.

    Article  CAS  Google Scholar 

  3. Yabuki, S., Mizutani, F., and Hirata, Y., Sens. Actuators, Ser. B, 2001, vol. 76, pp. 142–146.

    Article  CAS  Google Scholar 

  4. Hokfelt, T., Neuron, 1991, vol. 7, pp. 867–879.

    Article  CAS  Google Scholar 

  5. Javitt, D.C., Biol. Physchiatry, 2008, vol. 67, pp. 6–8.

    Article  Google Scholar 

  6. Nong, Y., Huan, Y.Q., Ju, G.W., Kalia, L.V., Ahmadian, G., Wang, Y.T., and Salter, M.W., Nature, 2003, vol. 422, pp. 302–307.

    Article  CAS  Google Scholar 

  7. Awawdeh, M.A., Legako, J.A., and Harmon, H.J., Sens. Actuators, Ser. B, 2003, vol. 91, pp. 227–230.

    Article  CAS  Google Scholar 

  8. Horányi, G. and Rizmayer, E.M., J. Electroanal. Chem., 1988, vol. 251, pp. 403–407.

    Article  Google Scholar 

  9. Johll, M.E., Asala, K.S., Swarts, M., Anderegg, J.M., and Johnson, D.C., Electroanalysis, 2000, vol. 12, pp. 248–254.

    Article  CAS  Google Scholar 

  10. Briseno, A.L., Mannsfeld, S.C.B., Formo, E., Xiong, Y.J., Lu, X.M., Bao, Z.N., Jenekhe, S.A., and Xia, Y.N.J., Mater Chem., 2008, vol. 18, pp. 5395–5398.

    Article  CAS  Google Scholar 

  11. Yoshida, T., Zhang, J., Komatsu, D., Sawatani, S., Minoura, H., Pauporte, T., Lincot, D., Oekermann, T., Schlettwein, D., Tada, H., Wohrle, D., Funabiki, K., Matsui, M., Miura, H., and Yanagi, H., Adv. Funct. Mater., 2009, vol. 19, p. 17–43.

    Article  CAS  Google Scholar 

  12. Milliron, D.J., Gur, I., and Alivisatos, A.P., MRS Bull., 2005, vol. 30, p. 41–44.

    Article  CAS  Google Scholar 

  13. Sanchez, C., Julian, B., Belleville, P., and Popall, M., J. Mater. Chem., 2005, vol. 15, p. 3559.

    Article  CAS  Google Scholar 

  14. Kriesel, J.W. and Tilley, T.D., Adv. Mater., 2003, vol. 15, p. 1645.

    Google Scholar 

  15. Gong, J., Zhou, T., Song, D., Zhang, L., and Hu, X., Anal. Chem., 2010, vol. 82, pp. 567–573.

    Article  CAS  Google Scholar 

  16. Dai, X., Wildgoose, G.G., Salter, C., Crossley, A., and Compton, R.G., Anal. Chem., 2006, vol. 78, pp. 6102–6108.

    Article  CAS  Google Scholar 

  17. Holland, V.R., Saunders, B.C., Rose, F.L., and Walpole, A.L., Tetrahedron, 1974, vol. 30, pp. 3299.

    Article  CAS  Google Scholar 

  18. Yang, J.H., Wang, H.S., Lu, L.H., Wang, Y.B., Shi, W.D., and Zhang, H.J., Synth. Met., 2008, vol. 158, pp. 572–576.

    Article  CAS  Google Scholar 

  19. Majdi, S., Jabbari, A., Heli, H., and Moosavi-Movahedi, A.A., Electrochim. Acta, 2007, vol. 52, p. 4622.

    Article  CAS  Google Scholar 

  20. Bard, A.J. and Faulkner, L.R., Electrochemical Methods-Fundamentals and Applications, New York: John Wiley and Sons, 2000.

    Google Scholar 

  21. Harrison, J.A. and Khan, Z.A., J. Electroanal. Chem., 1970, vol. 28, p. 131.

    Article  CAS  Google Scholar 

  22. Bard, A.J. and Faulkner, L.R., Electrochemical Methods-Fundamentals and Applications, Chapter 8, New York: John Wiley and Sons, 1980, p. 288.

    Google Scholar 

  23. Zheng, L. and Song, J.F., Anal. Biochem., 2009, vol. 391, pp. 56–63

    Article  CAS  Google Scholar 

  24. Vidotti, M., Cordoba de Torresi, S.I., and Kubota, L.T., Sens Actuators, Ser. B, 2008, vol. 135, pp. 245–249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Azadbakht.

Additional information

Published in Russian in Elektrokhimiya, 2014, Vol. 50, No. 1, pp. 53–61.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azadbakht, A., Abbasi, A.R. Fabrication of a high sensitive glycine electrochemical sensor based on immobilization of nanostructured Ni chelidamic acid and bimetallic Au-Pt inorganic-organic hybrid nanocomposite onto glassy carbon modified electrode. Russ J Electrochem 50, 46–53 (2014). https://doi.org/10.1134/S1023193513010035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193513010035

Keywords

Navigation